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Abstract 

 

Variations in training and individual doctor’s listening skills make diagnosing a patient 

via stethoscope based auscultation problematic.  Doctors have now turned to more advanced 

devices such as x-rays and computed tomography (CT) scans to make diagnoses. However, 

recent advances in lung sound analysis techniques allow for the auscultation to be performed 

with an array of microphones, which send the lung sounds to a computer for processing.  The 

computer automatically identifies adventitious sounds using time expanded waveform analysis 

and allows for a more precise auscultation. 

We investigate three data mining techniques in order to diagnose a patient based solely 

on the sounds heard within the chest by a “smart” stethoscope.  We achieve excellent recognition 

performance by using k nearest neighbors, neural networks, and support vector machines to 

make classifications in pair-wise comparisons.  We also extend the research to a multi-class 

scenario and are able to separate patients with interstitial pulmonary fibrosis with 80% accuracy.  

Adding clinical data also improves recognition performance.  Our results show that performing 

computerized lung auscultation offers a low-cost, non-invasive diagnostic procedure that gives 

doctors better clinical utility especially in situations when x-rays and CT scans are not available.  
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Chapter 1  

Introduction 

Advances in research methods and new technologies make medical practice a very 

dynamic field.  Almost daily, various medical researchers publish results of a current medical 

study claiming a new drug lowers cholesterol, a new treatment option for cancer, etc.  Sometimes 

a new technology is presented for use as a diagnostic tool.  In this thesis, we present a “smart” 

stethoscope that will improve the diagnosis of cardiopulmonary disorders. The “smart” 

stethoscope will contain an embedded chip and rely on microphones and computerized 

algorithms to make an instant diagnosis. This technology will impact the way medicine is 

practiced, especially in remote areas where expensive and bulky devices such as chest x-rays and 

computed tomography (CT) scans are not available.  

A similar impact occurred in 1816 when Laennec introduced the stethoscope.  Instead of 

diagnosing patients largely based upon external symptoms, for the first time, a doctor was able to 

perform lung auscultation and effectively listen to internal chest sounds.  

 Over time, the design of the stethoscope has been improved upon and nearly everyone in 

the medical practice uses one.  It has been at the forefront for performing auscultation for 
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generations and has practically become a symbol of the medical profession.  Figure 1.1 illustrates 

the enhancements made to the stethoscope and their inventors [1].   

 

Figure 1.1 Evolution of the Stethoscope 

Still, in spite of the improvement of the stethoscope, other medical diagnostic tools have also 

been introduced and seem to have partially phased out the stethoscope as the primary diagnostic 

tool.  One of the biggest advances was the invention of the chest X-ray.  Proponents of the X-ray 

cited its reliability as a primary benefit over auscultation using a stethoscope.  Lung auscultation 

via a stethoscope principally relies on the doctor’s ear, skill, and training.  The differences in 

these three factors can cause great variability and diminish the clinical utility of the stethoscope.  

In spite of this, the stethoscope remains widely used as an initial diagnostic tool.  A doctor will 

listen for sounds at several locations and then make a recommendation for a more thorough, 

objective test.  These tests include chest X-rays, CT scans, magnetic resonance imaging (MRI), 

blood tests, spirometry, pulmonary arteriography, lung biopsy, and radioisotope scanning 

techniques [2].  

 Still, these tests can be very expensive to perform.  New medical technology has been the 

primary cause for the rising health care costs and insurance premiums.  There are two ways to 

combat these rising costs.  First, doctors should be judicious as far as which tests to prescribe to 

which patients.  Smartly applying various diagnostic tests to patients with certain symptoms can 

reduce the total costs [3].  For instance, not every patient requires a CT scan, so only perform the 

test on those where the most benefit can be gained by ordering the test.  The second way to 

combat rising health care costs is to develop more cost effective treatments.  A cheap test that 

can easily be read by a technician is of utmost importance in reducing health care costs.  Many of 



15 

the aforementioned tests cost health care providers nearly a thousand dollars per trial [3]. Not 

only are some of the currently practiced tests monetarily expensive, but they are also expensive 

from a waiting time standpoint.  Oftentimes patients will have to wait in a queue for access to the 

specialized equipment.  Even after the testing, more waiting can occur.  It takes a fair amount of 

time for doctors and technicians to “read” the results or to wait for a lab to process the sample.   

In this thesis, we will present and discuss an emerging technology that will help doctors 

make better decisions and also to speed up a patient’s diagnostic time.  We investigate a data 

mining approach to accurately diagnose patients based on the sounds contained in the chest while 

breathing.  In a sense, we return to the diagnostic properties of Laennec’s acoustic stethoscope.  

This time, instead of a doctor performing the analysis, a “smart” stethoscope will be used. In the 

“smart” stethoscope, microphones will perform the auscultation and then a computer will be used 

to analyze the sounds and ultimately make a recommendation for a diagnosis.  This diagnostic 

tool will be interpreted by a doctor to prescribe further tests or begin treatment.  Using a 

computerized approach will eliminate the variability in the doctor’s skill and ear and ultimately 

improve the reliability of a diagnosis.   

We expect the smart stethoscope to find application areas in many settings: in physician’s 

offices, hospitals, nursing homes - essentially everywhere the stethoscope is used to listen to 

hearts and lungs. In addition, new areas of exploitation include settings where doctoral expertise 

or stationary medical equipment is not always available: diagnostics on tanker ships, oil rigs, 

embassies, soldiers operating in remote areas, and home monitoring by a visiting nurse. The 

diagnostic information provided by the “smart” stethoscope can be used on the spot or sent to a 

doctor for further analysis. 

1.1 Thesis Overview 

The goal of this research is to develop a decision analysis tool for doctors to use when 

diagnosing chest and lung disorders.  It is based on automated auscultation and can be expanded 

to include clinical data such as temperature, blood pressure, etc.  We aim to show that 

computerized auscultation is a viable tool that will provide cost effective and non-invasive 

diagnoses.  Here, we provide a chapter overview of the remainder of the thesis. 
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Chapter 2 – Introduction to Time Expanded Waveform Analysis and Adventitious Lung 

Sounds 

Chapter 2 provides an introduction to the study of lung sounds and common medical practice.  

We discuss the various types of sounds that can be heard when performing auscultation.  They 

are crackles, wheezes, rhonchi, and squawks. These sounds are the main source s of information 

in distinguishing between diagnoses in our analysis.  Next, we describe the five diseases we 

distinguish between: pneumonia (PN), congestive heart failure (CHF), interstitial (idiopathic) 

pulmonary fibrosis (IPF), asthma, and chronic obstructive pulmonary disease (COPD).  Also 

included in the study are asymptomatic patients.  We describe the diseases with respect to the 

adventitious lung sounds and also provide insight as to how doctors make a diagnosis for each.  

Additionally, we introduce the multi-channel lung sound analyzer used to record the sounds.  

Finally, we perform a literature review of other computerized auscultation studies. 

 

Chapter 3 – Foundations for Data Mining Analysis 

In Chapter 3, we provide an overview of the machine learning methods used in this research.  In 

particular, we focus on supervised learning methods such as neural networks, k nearest 

neighbors, and support vector machines (SVM).  Support vector machines are primarily used for 

binary classification purposes and we describe some other commonly accepted approaches to 

expand the binary problem to a multiple class scenario. A multi-class scenario is applicable to 

making a diagnosis from a wide spectrum of diseases.  

 

Chapter 4 – Classifying Lung Sounds 

In Chapter 4, we describe how the data we collect using the multi-channel lung sound analyzer is 

incorporated into the machine learning framework.  Most of the features are collected from the 

auscultation by the “smart” stethoscope. In addition to these, we supplement this data with 

features that describe the distribution of the sounds around the chest. We also add some clinical 

features for our analysis.  To perform the analysis, we first look at classifying individual crackles 

(a sound that will be fully described in Chapter 2).  We also introduce a voting schema that will 

be used to increase diagnostic performance and make diagnoses on the patient level.  Next we 

expand the machine learning process to include all adventitious lung sounds by classifying 
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individual breaths.  We provide the framework used to conduct the analysis, including 

determining training and testing sample sizes and various model validation approaches. 

 

Chapter 5 – Results and Discussion 

Chapter 5 presents results of lung sound classification.  It describes the metrics we use to 

evaluate trial results.  It includes the classification performance of all pair-wise comparisons, 

multi-class classifications, and gauges the performance of adding clinical information.  In 

addition, several results are highlighted and discussed for their immediate impact on the medical 

field.   

 

Chapter 6 – Summary, Conclusions, and Future Work 

We discuss the overall effectiveness of our present model and propose ideas for future research.  

Also, we include a long-term vision of potential applications of this technology including remote 

telemedicine, and in-home patient monitoring. 

1.2 Thesis Contributions 

This research makes the following contributions: 

 Shows that multi-channel lung auscultation is a viable method for medical 

research. 

 Shows that interstitial pulmonary fibrosis crackles are distinguishable from 

crackles of other diseases using acoustic analysis. 

 Demonstrates that most pairs of diseases can be separated based on sounds, 

including asthma and chronic obstructive pulmonary disease.  Pneumonia and 

congestive heart failure patients can be separated by incorporating acoustic and 

clinical data.  

 Introduces a hybridized approach to data mining that combines data from multiple 

sources to make a diagnosis.   

 Shows that interstitial pulmonary fibrosis and asymptomatic patients can be 

correctly classified when several diseases are possibilities. 
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Chapter 2  

Introduction to Time Expanded Waveform 

Analysis and Adventitious Lung Sounds 

In this chapter, we seek to explore the physiology of the sounds heard throughout the 

chest during the breathing cycle and also provide a description of the diseases that are used in 

our study.  Adventitious lung sounds have been described and useful in diagnostic procedures 

since the invention of Laennec’s stethoscope.  Here we describe the sounds known as crackles, 

wheezes, rhonchi, and squawks in accordance with accepted medical standards.  We begin the 

chapter with an introduction of the computerized lung sound analyzer developed and used by 

Stethographics to record the patients who participated in this study.  Its development is 

paramount to this study.  The last section in the chapter describes some current studies relevant 

to computerized lung sound auscultation. 
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2.1 Computerized Auscultation 

As advances in medical technology offered new methods to diagnose patients with lung 

diseases, the use of a stethoscope for auscultation waned in popularity and methods such as the 

chest X-ray became favored.  A preeminent medical researcher in the field of lung sounds even 

claimed that auscultation had been reduced to a “perfunctory ritual” [4].  A primary cause of 

auscultation falling out of favor with pulmonologists is the high variability of doctor’s listening 

abilities [5].  With no concrete standards, each physician could essentially hear the sounds 

differently and as a result possibly misdiagnose a patient.  In order to combat this high 

variability, pioneering researchers began investigating the role of computer based technology in 

order to objectively measure and visualize the sounds inherent to cardiopulmonary diseases.  In a 

groundbreaking study, Murphy et al. introduced a methodology known as Time Expanded 

Waveform Analysis (TEWA) [6].  At the time of the journal article, normal lung sounds could 

not be distinguished from the adventitious or abnormal lung sounds using conventional recorder 

speeds.  Instead, they visualized the waveforms at a much higher frame rate, essentially zooming 

in on the waveform; thus the name, TEWA.  For the first time, adventitious sounds could be 

visualized.  TEWA creates reproducible visual displays that allow for a more objective approach 

to differentiating features of lung sounds and which also enhances the diagnostic utility of the 

sounds [6].   

One of the first successful applications of TEWA was centered on the detection of an 

adventitious lung sound known as a crackle in workers with exposure to asbestos.  TEWA was 

able to help doctors define the crackles as well as monitor the patients [7]. TEWA was also 

useful in setting standard definitions for various lung sounds [8].  One of the next applications of 

the technology was for the development of an automatic crackle counter.  The results of a study 

comparing methods to detect crackles validated the computerized methodology since the results 

were highly correlated with doctor’s counts [9].  These discoveries led to the development of the 

multi-channel lung sound analyzer.  A full description is given in [2]. 

The multi-channel lung sound analyzer used in this thesis was developed by 

Stethographics (STG) and the model is known as STG-1602.  The STG-1602 consists of a total 

of sixteen miniature microphones which are inserted into the chest pieces of stethoscopes.  

Fourteen of these microphone based stethoscopes are embedded into a soft foam pad and the two 



21 

additional stethoscopes are placed on the trachea and heart.  The foam pad is positioned on a 

gurney or examination bed with a cover placed over it for sanitary purposes.  The patient lies on 

the pad and several full breath cycles are recorded.  An illustration of the pad and a picture of the 

STG-1602 in use are shown in Figure 2.1. 

 

Figure 2.1 Illustration of STG-1602 and a Picture of a Recording 

The lung sounds are fed through a signal processing box, an analog to digital converter, 

and finally into a computer running software specifically designed for this purpose.  The 

software helps aid the diagnosis process in two ways.  First, the lung sounds are displayed 

directly on a computer screen.  Visual displays can help doctors notice the adventitious lung 

sounds in the breathing process.  The visual display depicts both the inspiratory and expiratory 

waveforms for all 16 channels.  Furthermore, the site of origin for the sounds is determined and 

the individual events can be viewed in three dimensions. The site of the individual sounds is 

found through the arrival times of the sounds at different microphones [10].  Figure 2.2 shows 

examples of both types of visualizations.  Notice the large amount of abnormal activity in 

Channels 13 – 15 and in the lower left portion of the 3D view.  These are adventitious lung 

sounds, which will be studied in more detail in Section 2.2.   



22 

 

Figure 2.2 3D Visualization and Waveform Visualization for all Channels 

In addition to providing visualizations of the waveforms and localizing the origins of the sounds, 

the software package of the STG-1602 automatically identifies the types of adventitious sounds 

studied in Section 2.2. 

2.2 Adventitious Lung Sounds 

Adventitious lung sounds are abnormal sounds that are heard in addition to the typical 

sounds associated with the breathing process.  Their acoustic characteristics appear to be 

superimposed on the normal background sounds heard within the chest.  These sounds can occur 

during both the inspiratory and expiratory phases of breathing.  Furthermore, the sounds can be 

discontinuous (crackles), or continuous (wheezes, rhonchi).  The occurrence of various 

adventitious lung sounds throughout the breathing cycle typically indicates that a patient has a 

cardiopulmonary disease.  In this section, we fully explain both discontinuous and continuous 

breath sounds.  A good introduction to these sounds is found on the instructional CD [11].  It 

even contains sample audio files for the sounds mentioned.   

2.2.1 Discontinuous Lung Sounds - Crackles 

Discontinuous lung sounds are characterized by their short duration and are often very 

sporadic in nature.  The predominant type of sound in this category is known as a crackle or rale.  

An auditory crackle can be compared to the occasional popping sound made by a campfire.  
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Although no one can be sure, medical experts believe the crackles are the result of the sudden 

openings of airways.  They may also occur as a result of fluid that is built up in the airways.  

Furthermore, crackles can be further subdivided and they can be characterized as either being 

“fine” or “coarse.” Again, this distinction is made on the basis of the acoustic characteristics of 

the event.  A fine crackle typically has a high pitch, low amplitude, and duration of less than 10 

milliseconds.  An analogy to this type of adventitious sound is that of bacon sizzling and popping 

when it is fried.  On the other hand, coarse crackles can have low pitches, higher amplitudes, and 

normally last longer than 10 milliseconds.  These coarse crackles can be compared to the sounds 

of water being poured out of bottle as described by Laennec.  Still, in spite of the acoustic 

differences between fine and coarse crackles, medical researchers feel that they are generated 

from the some underlying physiologic causes.  An example waveform of a breath containing 

several crackles is shown in Figure 2.1 [11]. The waveform on the top shows two full breaths. 

The waveform on the bottom is the time expanded waveform analysis and essentially provides a 

close up view of the sound.  

 

Figure 2.3 Breath Waveform with Crackles Denoted by "C" 

When detecting crackles via the multi-channel lung sound analyzer, it is important to note 

that the sound of a crackle can be heard throughout the chest, which means it gets picked up by 

multiple channels.  Detecting these crackles throughout the chest led to the concept of a crackle 

family.  A crackle family is the set of waveforms that correspond to a single event within the 

chest.  As a result, special care needs to be taken in order to consider only the dominant crackle.  

The dominant crackle is determined by the channel where the crackle has the highest recorded 
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amplitude and this crackle is known as the mother crackle.  All other recorded crackles that were 

generated from the same event are known as daughter crackles [12].   

2.2.2 Continuous Lung Sounds 

Continuous long sounds last much longer than the sporadic or explosive crackles 

mentioned previously.  These sounds may last for almost the entirety of the patient’s breath.  Of 

these sounds, we look at wheezes, rhonchi, and squawks.   

2.2.2.1 Wheezes 

A wheeze is one type of continuous adventitious breath sound and sometimes has a 

musical type tone to it.  A typical wheeze lasts for more than 200 milliseconds.  

Associated with a wheeze are high frequency sinusoidal waveforms and whistling 

sounds.  Wheezes are believed to be caused by narrowing of the airways.  A wheeze 

waveform is shown in Figure 2.2 below [11].  The most commonly associated disease 

with wheezes is asthma. 

 

Figure 2.4 Time Expanded Wheeze Waveform 

2.2.2.2 Rhonchi 

A rhonchus is very similar to a wheeze and is characterized by its very low pitch.  It 

also has a much lower frequency.  Rhonchi are frequently caused by airway secretions 

but sometimes can be caused by a narrowing of the airways.  A sample rhonchus is 
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shown in Figure 2.3.  Compared to Figure 2.4, it is easy to see the differences in the 

frequency [11].  

 

Figure 2.5 Time Expanded Rhonchus Waveform 

2.2.2.3 Squawks 

A squawk when compared to a wheeze or rhonchus is much shorter in duration, but 

not to the point of being characterized as a discontinuous adventitious lung sound.  They 

sound like a quick squeak and have a brief sinusoidal waveform.  The waveform of a 

squawk is depicted in Figure 2.4 [11].  

 

Figure 2.6 Time Expanded Squawk Waveform 
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2.3 Cardiopulmonary Disease Overview 

In this section, we look at each of the five types of diseases that we aim to distinguish.  

They are pneumonia (PN), congestive heart failure (CHF), asthma, chronic obstructive 

pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF).  We also include 

asymptomatic patients, which are also referred to as normal patients.  They are patients without a 

known cardiopulmonary disorder. In each subsection, we seek to achieve the following goals: 

 Provide a brief description of the disease. 

 Identify current diagnostic procedures. 

 Present a brief overview of potential adventitious lung sounds present in a patient with 

the specified disease. 

 Provide an illustration of the waveforms associated with the specified disease. 

All waveform illustrations are taken from [11]. 

2.3.1 Pneumonia 

Pneumonia is an infection of the lung, most commonly caused by bacteria, but also by 

viruses, fungi, and parasites.  The infection causes portions of the lung to fill with fluid.  It is the 

sixth leading cause of death in the United States, and the leading cause of death from infectious 

disease [13]. Oftentimes, pneumonia develops when a person already has a weakened immune 

system.  Most patients with pneumonia display some sort of respiratory symptoms including a 

cough and sputum production.  Other symptoms that are typically present include fever and 

increased respiratory rate [13].  

Adventitious lung sounds are usually present in a patient with pneumonia. Crackles that 

occur at the base of the lung are the most common, but other sounds such as wheezes and 

squawks can be present as well.  The crackles tend to be consolidated within the region of the 

lung containing the infection.  Furthermore, the lung sounds may be quieter than normal [11].  In 

Figure 2.8, the patient has a significant amount of inspiratory crackles which are consolidated at 

the left base.  In the illustration, the numbers correspond to the channel where the waveform was 

recorded.  Also, the small green and blue bar below the waveform depict the inspiration and 

expiration periods of the breathing phases, respectively.  The time expanded waveform is 

directly below this bar and represents 100 milliseconds.   
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Figure 2.7 Waveform Patterns of a Pneumonia Patient 

Typical diagnostic procedures for pneumonia include ordering a chest x-ray, computed 

tomography (CT) scans, and possibly lab work including blood tests and sputum analysis.  A 

chest x-ray is the most commonly applied diagnostic technique.  In a patient with pneumonia, the 

chest x-ray will possibly show white areas known as infiltrates that indicate an infection [14].  

Still, chest x-rays do not remove the problem of observer variability so more thorough tests may 

be needed.  A CT scan is often referred to as the gold standard since it is more sensitive to 

infiltrates than a simple chest x-ray.  Still, a CT scan is only performed if a chest x-ray does not 

produce results.  Although not a standalone diagnostic technique, the analysis of a patient’s 

sputum can help identify the presence of the type of bacteria causing the infection.  As a result, 

an appropriate antibiotic can be prescribed [13].  

2.3.2 Congestive Heart Failure 

Congestive heart failure is a serious condition in which the heart cannot pump enough 

blood to the body.  It is a chronic, long-term condition.  It can develop over time as a result of 

factors such as high blood pressure, obesity, coronary artery disease, or it can develop suddenly 

as a result of a heart attack.  Many symptoms of heart failure result from the congestion that 

develops as fluid backs up into the lungs and leaks into the tissues.  Some symptoms of CHF 

include shortness of breath, cough, fatigue, and swelling of the ankles and feet [15].   

Although this is primarily a heart condition, adventitious lung sounds still occur because 

of the buildup of fluid within the lungs.  The primary lung sounds heard in CHF are crackles that 

occur in the bases of the lungs.  Unlike localized crackles in pneumonia, the crackles that occur 
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in CHF tend to be more symmetric and occur in both lungs simultaneously.  Crackles that occur 

higher in the chest may indicate increasing severity of the illness.  Some wheezes and rhonchi 

can also occur particularly in the late expiratory phase of breathing [11]. In Figure 2.9, crackles 

can be seen occurring in the bottom of both lungs. 

 

Figure 2.8 Waveform Patterns of a Congestive Heart Failure Patient 

A typical starting point for diagnosing CHF is taking a patient history and performing a 

physical examination.  A physical may reveal swelling of the legs and ankles which is a good 

indication of CHF.  If a physical does not produce a useful diagnosis, an echocardiogram may be 

performed. It is an effective but expensive diagnostic procedure.  It is an ultrasound that can 

reveal the size and the performance of the various chambers of the heart.  Doctors can use the 

results from the echocardiogram to measure the amount of blood pumped to the body in each 

heartbeat [15].  It also can reveal other cardiac abnormalities which can be pertinent in a 

diagnosis.  Also, chest x-rays have some utility in determining the size and function of the heart.   

2.3.3 Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease is defined as a “disease state characterized by 

airflow limitation that is not fully reversible” [16]. COPD encompasses a class of diseases that 

are closely related to one another.  It is the fourth leading cause of death in the United States.  

The two dominant diseases that make up the class are chronic bronchitis and emphysema.  

Chronic bronchitis is defined as chronic, sputum producing cough that lasts for more than three 
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months of the year for two consecutive years.  Emphysema destroys the alveoli, the place within 

the lungs where the exchange of oxygen and carbon dioxide occurs [17].  Both chronic bronchitis 

and emphysema can be caused by smoking.  Because of their common cause, the diseases often 

occur together and the diagnosis and treatment options are very similar.  Other symptoms of 

COPD include decreased lung function, shortness of breath, wheezing, and experiencing 

difficulty exhaling [17].   

 Lung sounds present in patients with COPD normally include wheezing as the expiratory 

phase comes to an end.  Also common are rhonchi, but they generally clear after coughing.  A 

patient also may have a few crackles along the base of the lungs.  Furthermore, the basic breath 

sounds are decreased in intensity [11].  The patient depicted in Figure 2.10 has low intensity lung 

sounds as well as several crackles focused at the bases of the lungs.  Unfortunately for the 

purposes of illustration, this patient does not have any wheezing present.   

 

Figure 2.9 Waveform Patterns of a COPD Patient 

Diagnosing COPD can be a difficult task since it is often mistaken as asthma since the 

symptoms are very similar.  A key step to diagnosing COPD is obtaining a patient’s medical  and 

personal history.  COPD should be suspected in any patient over age 50 with a history of 

smoking [17].  A more precise diagnosis can be made using pulmonary function tests known as 

spirometry.  These tests measure the airflow obstruction in the lungs when the patient breathes 

out.  It measures the maximum volume and the force of the air as it is exhaled from the lungs.  
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Lower flow rates are observed in a patient with COPD.  A chest x-ray is typically obtained in 

addition to spirometry in order to distinguish COPD from CHF [16].  

2.3.4 Asthma 

Asthma is one of the most prevalent chronic diseases in the United States, affecting 57 

per 1,000 persons.  The National Institute of Health defines asthma as “a chronic inflammatory 

disorder of the airways that causes signs and symptoms of airflow limitation, wheezing, 

breathlessness, and cough” [18].  Notice that these are practically the same symptoms as those 

pointed out for COPD in Section 2.3.4.  One of the main distinguishing characteristics between 

the two diseases is that of the patient history.  Oftentimes, asthma can be diagnosed at a young 

age whereas COPD tends to develop as a result of frequent smoking over the course of one’s life.   

The dominant adventitious lung sound in asthma is wheezing.  In spite of this, wheezing 

may only be present during an asthma attack.  If a patient’s asthma isn’t active, the patient may 

appear asymptomatic.  For this reason, a lot of importance is placed on factors other than just the 

wheezing.  It is important to note that not all wheezing is asthma related.  Figure 2.11 shows a 

patient with wheezing and decreased lung sounds.  Wheezing is present in both inspiration and 

expiration. 

 

Figure 2.10 Waveform Pattern in an Asthma Patient 

Diagnosing asthma is quite complicated because the definition of it is so broad.  In order 

to make a diagnosis of asthma, three criteria are important: 
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1. Symptoms consistent with airflow limitation 

2. Airflow limitation is partially reversible with an inhaler 

3. Other diseases are excluded as possibilities. 

The answers to these three criteria can be obtained through patient history, physical examination, 

and spirometry [18].  

2.3.5   Idiopathic Pulmonary Fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the scarring and 

thickening of the lungs.  It is called idiopathic since there is no known cause for the disease.  The 

disease most often occurs in the elderly and does not have a favorable prognosis.  No cure exists 

and treatment does not help too often.  It is a fairly rare disease that may cause problems when 

attempting to diagnose a patient since doctors do not see the disease that frequently.  Some 

common symptoms include chest pain, shortness of breath, and a dry cough [19].  

Fine crackles at the bases of the lungs are the most common adventitious lung sound.  

They tend to occur towards the end of the inspiratory portion of the breath cycle.  As the 

patient’s condition worsens, more crackles are noticed throughout the entire chest.  When the 

crackles begin to be heard in the expiratory phase, it is another sign of a worsening condition.  

Squawks are also heard occasionally in patients with IPF [11].  Since the lung sounds closely 

resemble that of CHF, it is commonly misdiagnosed as such.  A patient with many inspiratory 

crackles is shown in Figure 2.11. 
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Figure 2.11 Waveform Pattern of an IPF Patient 

 Diagnosing IPF is frequently troublesome because of variability in chest x-rays.  No true 

telltale signs exist when examining the x-rays.  A better diagnostic technique is the CT scan.  It 

can depict the extent of the fibrosis.  Patchy infiltrates are often present at the base of the lungs.  

In Section 2.3.2, we pointed out that pneumonia has similar infiltrates – another possibility for 

misdiagnosis.  In order to rule out other potential diagnoses, a transbronchial lung biopsy is 

sometimes performed [20].  

2.3.6 Normal 

Obviously, this is the one category that does not pertain to a specific disease.  They are 

asymptomatic patients in the fact that they don’t present any typical signs of an existing 

cardiopulmonary disease.  The patients in this set have come to the hospital for a routine check-

up or annual physical and have agreed to have their breath sounds recorded.  From these patients, 

a subset was taken in order to statistically match the ages and demographics of the diseased 

population.  Initially, one would think that a normal patient would not have any adventitious lung 

sounds.  This is not the case for many normal patients.  In fact, many of them possess crackles 

and wheezing to some extent.  Figure 2.12 shows the waveforms of a typical normal patient.  No 

adventitious lung sounds are present.  
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Figure 2.12 Waveform Patterns of a Normal Patient 

2.4 Previous Studies Involving Computerized Auscultation 

Computerized auscultation has resulted in several successful studies.  As mentioned 

previously in Section 2.1, one of the first successful applications of TEWA is that Murphy et al 

were able to detect and characterize crackles in workers with exposure to asbestos.  TEWA was 

used to train medical technicians for the surveillance of the workers [7].  Early on, computerized 

auscultation was also used to verify the number of crackles heard within a patient.  Being able to 

perform accurate crackle counts justified the use of computers when listening to the chest [9].  

Building on the early results of the detection of asbestosis via computerized auscultation, 

al Jarad and Strickland et al. compared the performance of TEWA to that of chest radiography 

and CT scans. They discovered that TEWA performed better than chest radiography in detecting 

the early phases of asbestosis and performed just as well as CT scans [21]. 

In 1994, Bettencourt et al, performed a study most similar in scope to ours. They utilized 

TEWA and tried to predict four diseases: PN, CHF, COPD, and IPF. They used multiple logistic 

regression to make diagnoses and were able to make diagnoses with 68% accuracy.  The study 

differs from ours since they used a very different set of features and also their patient sample 

sizes were much smaller. Still, this is a very relevant example of the capability of the 

computerized auscultation [22]. In another study, Kawamura et al used time expanded waveform 
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analysis to study 18 patients with IPF and 23 patients with crackles who did not have this 

disease. They too were able to separate IPF crackles from other diseases with some success [23].   

Gavriely and Nissan evaluated the addition of computerized lung sound analysis to a 

questionnaire and spirometry measurements in a respiratory health screening program of 493 

subjects.  Although they did not perform TEWA, they detected adventitious lung sounds that 

were outside the normal range.  The investigators found that the sensitivity for detection of 

respiratory disease rose from 71% to 87% by adding the lung sound information to the traditional 

tests [24].  

Building on these benchmark studies led to the multi-channel STG-1602 in use today.  In 

its first application it was used to study the properties of the sound transmission within the lung 

and its relationship to lung volume [25].  More recently, Murphy et al successfully determined 

that the lung sounds in patients with pneumonia can be separated from the lung sounds in 

asymptomatic patients.  The study further verified the applicability of analysis by computerized 

auscultation [5].  Using the multi-channel analyzer, Vyshedskiy et al sought to describe how 

sounds travel throughout the chest.  They documented that crackles in patients with CHF and PN 

were transmitted over a larger area than those of patients with IPF.  They also found that the 

crackles of IPF also have a higher frequency [12].   

Most studies in the field do not focus on determining the differences within diseases, but 

instead revolve around finding new methods to define the acoustic waveform more accurately.  

Their rationale is that the better the sounds are defined, the better the underlying physiology can 

be understood and a doctor will be able make a better diagnosis.  One study that tries to better 

describe the sounds is performed by Kandaswamy et al. They use a more advanced technique 

known as wavelets to process the lung sounds since they are non-stationary. Once the wavelets 

are computed, they use neural networks (explained in Section 3.4.2) to determine if the sound is 

a crackle, squawk, wheeze, rhonchus, or normal [26]. A study by Taplidou and Hadjileontiadis 

aimed to construct an automatic technique for wheeze detection and monitoring using spectral 

analysis.  Their efficient method defines wheezes very well even in the presence of background 

noise [27].  

Furthermore, a recent paper by Güler, Polat, and Ergün use neural networks and genetic 

algorithms [28] to better distinguish adventitious lung sounds from the background noise.  In 

their study, they claim that a time-frequency based modeling approach , such as TEWA, does not 
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effectively reduce the background sounds [29]. Contrary to their criticism, we show that TEWA 

is still an effective means to summarize lung sounds.  

2.5 Summary  

This chapter has provided a brief background to the burgeoning field of computerized 

auscultation.  We presented the methodology known as time expanded waveform analysis that 

was used to define more clearly the adventitious lung sounds such as crackles, wheezes, rhonchi, 

and squawks.  We discussed five diseases that we investigate in this thesis and also an 

asymptomatic (normal) class.  Finally, we reviewed previous studies involving computerized 

auscultation. Since it is a very new field, few studies exist that are similar in scope to this study.  

In the next chapter, we depart from the medical field and introduce data mining and machine 

learning techniques which are featured in our analysis. 
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Chapter 3  

Foundations for Data Mining Analysis 

 As described in Chapter 1, the primary of goal of this research is to be able to provide a 

decision analysis tool for doctors to use when diagnosing chest and lung disorders.  For the 

purpose of developing the automated diagnostic device, we will incorporate data mining and 

machine learning models. These models need to satisfy the following requirements: 

 Fast recognition in the test phase 

 Be able to operate in near real-time 

 Be able to perform classifications when there are multiple classes 

 Must be data-driven since all our knowledge stems from a large dataset 

We will show that models introduced in this chapter satisfy the above mentioned requirements 

and therefore will be useful in developing the smart stethoscope. 

This chapter introduces the scientific disciplines involved in the thesis and provides a 

detailed explanation of each.  Furthermore, this chapter provides a description of the three main 

classification techniques employed in the thesis: neural networks, k-nearest neighbors, and 

support vector machines.   
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3.1 Scientific Disciplines 

This thesis focuses on two disciplines that are very closely related.  The first is the 

discipline of data mining and the second is machine learning.  This thesis falls within both of 

these scientific disciplines.  Loosely defined, data mining is the extraction of useful knowledge 

from vast databases.  Nearly analogous to data mining is machine learning.  Machine learning 

focuses on using computer based algorithms to learn and model real world behavior.  Most of the 

time, characterizing the research as one discipline or the other is often a matter of semantics.  In 

sections 3.1.1 and 3.1.2, we further define both machine learning and data mining and also 

explain how computerized cardiopulmonary diagnoses fit into both disciplines.   

3.1.1 Data Mining 

Computers and increased digital storage capacity have allowed electronic databases to 

grow to unprecedented sizes.  Oftentimes, relationships and fundamental information about the 

data cannot be easily inferred because of the large size of the database.  Data mining is an 

emerging scientific discipline that is focused on discovering these relationships.  One textbook 

defines the field as “the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and useful to 

the data owner” [30]. The author stresses that the data normally involved within a data mining 

analysis usually is not collected for this purpose.  Instead, it can be collected beforehand for a 

separate purpose entirely and it isn’t until later when data mining techniques can be applied to 

reap some new, insightful, knowledge.  In this sense, data mining is often an analysis on indirect 

data.  

 In our case, data was initially collected in order to provide teaching aids to those in the 

medical profession.  Audio recordings of patients with certain cardiopulmonary disorders were 

analyzed in depth and compiled in a software package which provided both visual and auditory 

aids to the medical professional.  Recently, because of the large amount of data, we are now 

applying data mining techniques to broaden the amount of knowledge we can discover from this 

dataset.  The datasets include thousands of individual sounds which make the problem difficult 

to be analyzed using a rudimentary analysis.  
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3.1.2 Machine Learning 

Machine learning is a field of research that falls within the realm of artificial intelligence.  

Loosely defined, artificial intelligence is a branch of computer science that is concerned with the 

automation of intelligent behavior [31].  Generally speaking, machine learning attempts to 

develop algorithms to allow computers to understand and model real world processes.  Hence, 

the intuitive name “machine learning.”  Machine learning techniques have been widely applied 

to adaptive control theory, brain modeling, evolutionary learning, and statistics.  In this thesis, 

we focus on the statistics discipline.  Statistical learning occurs in two forms: supervised 

learning, and unsupervised learning.  In supervised learning, a model is built with the purpose to 

be able to map input objects to a desired output value.  If the model is built to predict a 

continuous output it is known as “regression”, if it is used to predict a class label, it is called 

“classification.”  In unsupervised learning, there is no output value.  Instead, the purpose is to be 

able to describe the relationships among the inputs or how the data is organized.  Classification 

problems are often described as “Black Box” problems.  Within the “Black Box” lies the 

complex modeling technique that ultimately provides a classification.  We will look at several 

techniques later on in this chapter.  Figure 3.1 provides an illustration of the “Black Box.” 

 

Figure 3.1 "Black Box" Illustration of Classification 

We use supervised learning because the data are labeled in advance.  Specifically, this 

problem represents a classification.  Each patient has a specific disease which we will try to 

classify based on available lung sounds and clinical data.  Problem formulation will be discussed 

in more detail in Chapter 4.   
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3.2 Classification Process Overview 

In order to accurately define the classification problem, we first need to introduce some 

notation and terminology.  We let  represent the d-dimensional input feature vector that 

represents the characteristics of the i
th

 sample we are attempting to classify.  Other texts may 

refer to the feature vector as an input vector or attribute vector.  The individual components of xi 

are likewise referred to as features, attributes, or input variables.  These features are usually 

defined by the user and are normally numeric or categorical in type.  Each feature vector has an 

associated class or label . 

Combining an individual feature vector, xi, with a label, yi, results in a sample (xi , yi ).  A 

training set, S, consists of a series of N samples which can be written as follows: 

   (3.1) 

The goal of the classification algorithm, is to use the training set to create a function which can 

map an unknown vector, x,  onto a class, y.  This process is known as training or learning.  The 

function should be able to classify samples within the training set accurately (empirical 

performance)  and also be able to perform well on a test set of data unseen in the modeling steps 

(generalization performance).   

 The end result of the classification is a classification function,  that 

computes a single value from all of the input variables.  Once h(x) is calculated, most algorithms 

have a threshold that is used to determine a cutoff value that separates the two classes.  The most 

common threshold is zero for ease of interpretability of the decision function, f(x).  Setting the 

threshold at zero results in the following decision function:  

  (3.2) 

This decision function returns a +1 or -1 for the binary classification process. 

 Evaluation of empirical and generalization performance is done in terms of error, or risk, 

used interchangeably.  Before we define error, we first explain the concept of loss.  A loss 

function, Loss(f(xi), yi), is a measure of how far the prediction varied from the actual class.  

There are many types of loss functions for both unsupervised and supervised learning techniques.  

For supervised learning with a binary decision function, an applicable loss function is the 

following: 
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  (3.4) 

This function is known as the 0/1 loss function since it returns a 0 when the classification is 

correct and a 1 otherwise.     

Now that we have defined the loss function, we can return to the concept of error.  Let the 

test error, or generalization error, be defined by the symbol ε.  It is the expected prediction error 

over an independent test sample 

  (3.5) 

The test error is the best estimate of how a classifier performs when it is subjected to unknown 

feature vectors that have been generated from the source distribution.  In order to calculate ε 

exactly, one would need to know the underlying distribution function of the data in order to 

calculate the expectation.  In general, this distribution is never known, which is why the 

performance must be estimated by a test sample.  Similarly, the training error, or empirical error 

can be defined by the symbol . 

  (3.6) 

Training error is the average loss over the training sample [32].  The training error is an estimate 

of the test error; however, at times it isn’t a good one.  Training error is directly related to model 

complexity.  Often times, it is possible to achieve almost zero training error by building a very 

complex model, but the model generalizes very poorly.  As a model becomes more complex, 

both training and test error decrease.  However, at some point the model becomes too complex 

and focuses too much on explaining the intricacies in the training data.  As a result, the test error 

begins to increase.  This tradeoff is shown in Figure 3.2 [32].     

 

Figure 3.2 Tradeoff of Error and Model Complexity 
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When a model is fit too much based upon the training data, it is known as over-fitting.  Figure 

3.3 provides an illustration of two models, one that grossly over-fits the data, and another which 

will be able to generalize well. 

 

Figure 3.3 Example of Over-fitting 

Obviously, the goal of any classifier is to maximize generalization performance.  In order 

to be effective in the real world, a classifier must be able to perform well when asked to classify 

unseen data.  However, within the learning process of a classifier, different types of errors are 

minimized depending on the type of classifier chosen.  Some, such as k-nearest neighbors and 

neural networks, minimize the training error, or the empirical risk.  These methods are founded 

upon the hope that data in the test set are generated from the same distribution as those that the 

model has been trained upon.  As a result, good performance on the training set will likely 

translate into similarly good performance on a test set.  These algorithms are said to follow the 

empirical risk minimization (ERM) principle.  Generalization error can be minimized by using 

cross validation to select the best parameters for the model.  

 On the other hand, a method developed by Vapnik and Chervonenkis known as support 

vector machines (SVM) seeks to minimize both the empirical error and generalization error 

simultaneously.  A function that takes into account both empirical and generalization error is said 

to follow the structural risk minimization (SRM) principle [33].  A technique within the learning 

process seeks to control the generalization error whereas in ERM methods, the generalization 

error can only be examined after the model has been fully learned.  By taking into account both 
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types of error within the learning stage, there is potential for greater generalization performance 

than with ERM methods.  The next section goes into more depth explaining the concepts of risk.   

 In summary, building a classifier takes several steps that can be seen in the process flow 

shown below in Figure 3.4 [34].  

 

Figure 3.4 Process Flow Chart for Building a Classifier 

As one can see, building a classifier is an iterative process.  If one algorithm doesn’t perform as 

well as hoped, the parameters can be tuned, and the model can be retrained.  Also, the process 

can go back even further to redevelop the features and introduce new ones, or even choose a new 

classification algorithm altogether. 

In the following sections, we further explain the concepts of empirical risk minimization 

and of structural risk minimization.  In addition, we discuss the three learning methods briefly 

mentioned in the preceding paragraphs.  They include k nearest neighbor, neural networks, and 

support vector machines.  Finally, this section has been a very brief overview of the process of 

learning a classifier from data.  Much more information can be found in [32, 33, 35]. 
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3.3 Learning Theory and Risk Revisited 

As mentioned previously, the concept of risk minimization is central to any learning 

algorithm.  In this section, we provide a summary of the learning theory and develop a 

framework for both empirical risk minimization and structural risk minimization.  To start, we 

expand on our notation of a decision function f(x).  Let f(x,w) be a specific decision function 

defined by fixed parameters w.  This vector, w, can be viewed as a set of weight parameters for 

each corresponding feature.  In the training phase, depending on the training set, the classifier 

will ultimately choose a weight vector for use in classifying.  With this new notation, we define 

the test error in terms of a actual risk , R(w).   

  (3.7) 

If R(w) = 0, then the classifier will never make an error and generalizes perfectly for any 

unknown feature vector.  In Equation 3.7, P(x, y) represents the joint cumulative distribution 

function of the features and class.  Since it is unknown, the distribution is empirically learned 

from the training set.   

 We also update the Equation 3.6 in terms of empirical risk to remain consistent with the 

literature [36].  

  (3.8) 

Unlike the actual risk, the empirical risk does not depend on the unknown probability 

distribution, only the training set and chosen decision function.  Also of note, the empirical risk 

can also be minimized with respect to the weight vector, w.  These two components provide the 

foundation for empirical risk minimization.   

 Empirical risk minimization is the process of determining a decision rule by finding a 

weight vector wemp from all potential vectors  that minimizes the risk.  More specifically,  

    (3.9) 

It also can be show that  

  (3.10) 

This says that as the training set grows larger and larger, the minimum empirical risk converges 

in probability to the minimum actual risk.  Derivations and proofs of empirical risk minimization 

can be found in [37]. 
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 In one of the most recent developments in the statistical learning field, Vapnik introduced 

a bound on the actual risk [33]. With the 0/1 loss function and a parameter η such that 0 ≤ η ≤ 1, 

the following bound holds with probability 1-η [36]: 

  (3.11) 

In Equation 3.11, h is a non-negative integer known as the Vapnik Chervonenkis (VC) 

dimension, N is the number of samples in the training set, and the risks are the same as defined in 

Equations 3.7 and 3.8.  Loosely defined, the VC dimension is a measure of the complexity of the 

family of classifiers .  For simplicity’s sake, a full derivation of the VC dimension is not 

mentioned here.  It is sufficient to assume that the more complex a classifier becomes, the higher 

it’s VC dimension.   

From Equation 3.11, one can see that the actual risk can be limited by minimizing 

training error, having a large training set, and also controlling the size of the VC dimension.  

Limiting the VC dimension is the fundamental concept of structural risk minimization.  In the 

derivation of support vector machines we show how this concept is applied.  A much more 

thorough reference on SRM and an explanation of the VC dimension is found in [36].   

3.4 Explanation of Specific Learning Algorithms 

After providing an ample background on the processes of data mining, machine learning, 

and classification, we finally are able to delve into the black box presented earlier.  These 

subsections will highlight the three learning algorithms explored in this thesis.  We present each 

method with discussion on its advantages and disadvantages.   

3.4.1 K Nearest Neighbors 

K nearest neighbors (kNN) is one of the oldest learning algorithms and is still useful in 

many cases.  It was pioneered by Fix and Hodges in 1951 [38].  It belongs to a class of 

algorithms known as lazy learning algorithms.  In lazy learning, the classifiers are based solely 

on the training set, and no additional model needs to be fit.  Given an unknown sample, the kNN 

algorithm finds the k samples in the data set closest in distance to the unknown sample and then 



46 

classifies using a majority vote [32].  The parameter k is specified by the user.  Typical distance 

metrics include the Euclidean metric,  

  (3.12) 

or the Manhattan metric, 

  (3.13) 

where m is the number of features.   

 Figure 3.5 below illustrates the kNN concept.  The green circle in the middle is the 

sample to be classified.  If k is chosen to be three, the circle will be classified as a member of the 

blue triangle class.  However, if k is chosen to be seven, the circle will be classified as a member 

of the red square class.   

 

Figure 3.5 k Nearest Neighbor Classification Example 

 For being a relatively simple classifier, it has the ability to perform very well on certain 

datasets.  One pioneering study involved the recognition of handwritten numerals and kNN 

performed the best out of several learning approaches [39].  

 In spite of its good performance on some datasets, kNN is not without its flaws.  One 

primary concern is its large memory storage requirements.  The model consists of every element 

of the training set so trying to implement it as a classifier may be very slow.  A second concern is 

that the choice of the neighborhood size, k, greatly affects the performance of the algorithm.  If 

the data is noisy, i.e.  the points are relatively intermixed; a small k could potentially result in 

classification errors.  Similarly, if the region that defines a certain class is very small in number 
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compared to another class, often times this region will be completely over looked due to the 

prevalence of the other class in the training data set.  These problems can be partially solved by 

varying the parameter k [34].  Also, the kNN approach is very sensitive to perturbations in the 

data and also irrelevant features since all features bear the same weight.  Another problem with 

this classification method is that the decision boundary is hard to conceptualize since it only 

depends on the training set in a very high dimension feature space.  Still, k nearest neighbors 

provides a simple, easily understandable classifier that has the potential to perform well.   

3.4.2 Neural Networks 

Unlike k nearest neighbors, neural networks are often viewed as the hardest classification 

algorithm to grasp.  They are an attempt to create a classifier built upon the architecture of the 

human brain.  In the basic single hidden layer neural network, there are three total layers.  The 

first is the input layer which inputs all feature vectors within the training set.  The second layer is 

the output layer which contains the results of the classification.  The third layer is referred to as a 

“hidden” layer.  All three layers consist of a set of neurons, thus the name neural networks.  This 

architecture can be seen in Figure 3.6. 

 

Figure 3.6 Neural Network Architecture with a Single Hidden Layer 
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 The premise of a neural network is to create linear combinations of the feature vectors in the 

hidden layer, and then model the output layer as a nonlinear function of the hidden layer [32].  

Within the neurons of the hidden layer are various activation functions which allow the neural 

network to represent complicated non-linear relationships.  Each connection in the network has a 

certain weight associated with it.  When the neural network is trained, the weights are constantly 

modified and adjusted in order to minimize the training error.  More complex neural networks 

can be made by adding neurons to the hidden layer or even adding more hidden layers.   

 The most common method to train a neural network is through a process known as back 

propagation.  Kotsiantis provides six key steps to training a neural network through back 

propagation [34].  

1. Present a training sample to the neural network 

2. Compare the network’s output to the desired output from that sample.  Calculate the 

error in each output neuron. 

3. For each neuron, calculate what the output should have been, and a scaling factor, how 

much lower or higher the output must be adjusted to match the desired output.  This is 

the local error. 

4. Adjust the weights of each neuron to lower the local error. 

5. Assign “blame” for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 

6. Repeat all previous steps until a stopping criterion is reached. 

Valid stopping criteria include stopping after the training sample has been presented to the 

network a certain number of times (known as epochs), stopping when the error reaches a 

threshold, or stop if there is no improvement in error over several epochs.   

 Because of neural networks very high complexity, extremely low training errors are 

normal, and achieving zero training error is not unheard of.  Still this method also has some 

drawbacks.  One that has been hinted at already is that with very high complexity also comes the 

possibility of over-fitting the training data.  The ability to generalize well is of utmost 

importance.  In order to combat over-fitting, premature stopping criteria are sometimes invoked.  

Another drawback is that there is no sure way to set up a network with the appropriate number of 

layers and neurons.  A network with too few neurons will not be able to capture the relationships 

in the data, and a network with too many neurons will tend to over-fit.  Finding an appropriate 
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size can be done through cross-validation or trial and error.  An additional drawback of building 

a large neural network is that the length of training time grows with the size of the problem.  The 

back propagation algorithm is not very fast and for large datasets with lots of features, training 

the algorithm becomes a very time intensive procedure.  Finally, one last drawback is that the 

solution space is non-convex with many local optima.  Oftentimes, the algorithm gets stuck in 

one of these local optima leading to poor generalization performance [32].  

 Nevertheless, neural networks are one of most commonly studied learning methods with 

literally hundreds of articles that document its successful application in practice.  Good textbooks 

for a more in depth analysis are [37, 40] 

3.4.3 Support Vector Machines 

As mentioned previously, support vector machines (SVM) are one of the newest methods 

in the supervised learning field.  They are developed by Vapnik in his book [33].  Unlike k 

nearest neighbors and neural networks, support vector machines attempt to minimize 

generalization error within the framework of the algorithm.  They do this by controlling both the 

training error, and the VC dimension as shown in Equation 3.11.  Generally speaking, a support 

vector machine seeks create a hyperplane that separates the two data classes.  Not only does the 

hyperplane separate the data, but also it is oriented in such a fashion that creates the maximum 

“margin” on both sides of it ensuring the largest possible separation between the two classes.  

This concept will become clearer in the following paragraphs.   

For ease of explanation, we assume that the training data can be separated by a linear 

hyperplane as shown in Figure 3.7 [41]. All data in the negative class lie on one side, whereas all 

data in the positive class lie on the opposite side of the hyperplane.  The central question to 

support vector machine is: which hyperplane separates the data the best? 
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Figure 3.7 Linearly Separable Data in 2D with Several Hyperplanes 

Algorithms that follow the empirical risk minimization principle would not distinguish 

from the sets of hyperplanes above.  However, support vector machines are able to find an 

optimal hyperplane.  To determine the best separating hyperplane, we first introduce some more 

mathematic notation.  All points that lie on the hyperplane satisfy the equation  , 

where w is normal to the hyperplane,  is the perpendicular distance from the hyperplane to the 

origin, and ||w|| is the Euclidean norm of w.  Finally, let d+ and d- represent the distances from the 

hyperplane to the nearest sample on the positive and negative side, respectively [36].  The sum of 

the distances is the margin.  These terms of interest are depicted in Figure 3.8. 

 

Figure 3.8 Geometric Definitions for a Separating Hyperplane 

The hyperplanes depicted above can be defined by the following equations: 

  (3.14) 

  (3.15) 
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Combining Equations 3.14 and 3.15 results in the following expression, 

  (3.16) 

This constraint enforces the fact that all samples must be classified on the correct side of the 

hyperplane.  Since the data is linearly separable, there exist points such that Equations 3.14 and 

3.15 are tight.  Essentially, these tight constraints form two additional hyperplanes that are 

parallel to the optimal separating hyperplane.  The distance between the two hyperplanes is 

known as the margin.  With some arithmetic it can be shown that the distance from one of the 

hyperplanes to the separating hyperplane is equal to .  This derivation can be found in an 

appendix.   

 In order to train a support vector machine, it requires solving an optimization problem.  

The goal of the SVM is to find the separating hyperplane with the largest margin subject to the 

constraint of classifying all the points correctly.  Remember, this data is assumed to be linearly 

separable.  The optimization problem is as follows: 

  

  

Notice that minimizing  will produce the same result as the previous formulation.  This 

results in the similar problem below. 

  

  

This reformulation translates to solving a convex quadratic programming program.  Minimizing 

a convex function is very beneficial since there are no local minima and therefore a global 

optimum can always be found.  There are plenty of software programs that can solve a problem 

of this type.  The samples for which the inequality constraint holds define the location for the 

optimum separating hyperplane.  These samples are known as the support vectors and thus the 

name of the method.  By constructing the optimal separating hyperplane in this manner, the VC 

dimension is constrained [33]. Limiting the VC dimension is a benefit of SVM that neural 

networks and k nearest neighbors do not possess.  Regulating the VC dimension allows for better 
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generalization performance theoretically.  A final figure depicting an optimal separating 

hyperplane for our contrived example is shown below. 

 

Figure 3.9 Optimal Separating Hyperplane and Support Vectors 

In many cases the linearly separable assumption does not apply because the data set 

contains some overlap.  A formulation known as the soft margin allows for some training 

samples to be misclassified.  In order to do this, slack variables, ξi , are introduced to the 

constraints.  The slack variable takes a positive value if the constraint cannot be satisfied for a 

given sample.  For each misclassification, a penalty parameter, C, is added to the objective 

function.  For large values of C, the margin is smaller in order to correctly classify more points.  

For small C, the support vector machine will place more importance on creating a large margin 

than classify all the training samples correctly.  The new optimization problem is rephrased as 

follows: 

  

  

  

One final property of support vector machines to bring up here is their ability to extend to 

non-linear problems as well.  In order to do this, the features are mapped to a higher dimensional 

space known as the transformed feature space.  A linear separation in the higher dimensional 

space, corresponds to a non-linear separation in the input space [34]. A kernel function, K(xi, xj), 
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calculates the inner product of two input vectors and transforms the data into a higher dimension.  

Popular choices for kernel functions include a polynomial kernel with degree p, 

  (3.17) 

and a radial basis function (RBF) kernel with width σ, 

  (3.18) 

Choosing to use a kernel is a decision made by the user before training the model. Using kernels 

lengthens the amount of training time significantly. [34].  

Support vector machines are very popular in practice because of their ability to generalize 

well and their computational efficiency.  Both of these properties stem from the fact that the 

SVM problem is formulated as a convex optimization problem.  This formulation guarantees an 

optimal solution in a finite amount of time.  A major drawback of SVM is that the general 

problem does not translate into a multi-class problem theoretically.  Methods implementing 

multiple binary classifications are shown in Section 3.5.   

Several good resources on the derivation of support vector machines are available in [33, 

36]. 

3.4.4 Classification Methods Summary 

All three classification methods mentioned here have certain advantages and 

disadvantages which have been mentioned throughout the section.  In a recent journal article, 

Kotsiantis provides a rating for each method in tabular form [34].  That table is modified for our 

purposes and shown below in Table 3.1.  One star represents poor performance, whereas four 

stars represent the best performance out of all classes of learning algorithms.   
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Table 3.1 Comparisons of Learning Algorithms 

3.5 Extensions to Multiple Class Problems 

Most of the derivations of the three methods in Section 3.4 were given in the context of a 

binary classification problem.  In this thesis, it is important to be able to distinguish different 

diseases based upon a pair-wise comparison.  In practice, suppose a doctor has studied the 

symptoms of a patient and has narrowed down the possible diagnoses to two possible diseases.  

A pair-wise acoustic analysis between these two diseases would be beneficial to aid the doctor 

make the correct diagnosis.  Although this is an important contribution of this thesis, we feel that 

a true multi-class problem is where the most potential gains lie.  A potential long term vision of 

this project is that a patient with symptoms pointing towards some sort of cardiopulmonary 

disease comes into the hospital, lies down on the acoustic analyzer, and a computer makes an 

instantaneous diagnosis out of all possible diseases.  Therefore it will be beneficial to frame the 

problem in this multi-class way. 

The k nearest neighbor algorithm is relatively simple to expand to a multi-class context.  

Simply include samples from all classes in the training set, and the nearest neighbor algorithm 

will make the classifications accordingly. 

Similarly, extending the multi-class framework to neural networks is a simple 

modification.  Again, include samples of all classes into the training set, and modify the output 

layer of the network.  The network should have one output neuron for each class to be modeled.   
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Extending the multi-class scenario to the support vector machine algorithm is trickier.  In 

the formulation we presented of SVM, only binary comparisons are possible.  In spite of this, 

ongoing research documents how to formulate SVM as a multi-class classifier.  Some popular 

attempts involve forming multiple binary classifiers.  The two classifiers we look at in this thesis 

are the One-Vs-One (OVO) classifier and the One-Vs-All (OVA) classifier. 

First, One-Vs-One was pioneered by Kreβel in [42]. This methodology involves creating 

binary classifiers for all pairs of classes.  If we let k be the number of classes, the method 

involves constructing  separate SVMs, one for each pair.  For a simple three class example, 

the comparisons would be Class 1 vs. Class 2, Class 1 vs. Class 3, and finally Class 2 vs. Class 3.  

In order to assign a unknown sample to a class, it is run through each trained classifier.  Each 

classifier “votes” for a class and the class receiving the most votes for a sample wins.  In case of 

a tie in the amount of votes, the tiebreaker will be the classifier involving the two tied classes and 

seeing the output of that comparison [42].   

The second approach we consider is the One-Vs-All approach.  Instead of computing  

classifiers, it only calculates k SVMs.  It constructs a SVM for each class k as the positive class, 

and lumps all other classes into one combined negative class.  For our simple three class 

example, the SVMs are Class 1 vs. Class 2&3, Class 2 vs. Class 1&3, and Class 3 vs. 1&2.  For 

an unknown sample, its classification is based on which hyperplane it was the furthest from. The 

point must lie on the positive side of the hyperplane which implies it is on the singular side of the 

hyperplane instead of the side where the classes are grouped.  The distance from the hyperplane 

indicates a degree of confidence of the prediction.  A point that lies far from the separating 

hyperplane is a much more confident prediction than one that lies near the hyperplane. In 

equation form, the decision is: 

  (3.19) 

A recent paper by Rifkin heralds this approach and claims it is well founded in regularization 

theory and is a time tested and very appropriate formulation of the multiclass problem [43].  The 

decision boundaries for both OVO and OVA are shown in Figure 3.10. 



56 

 

Figure 3.10 Decision Boundaries for Multiclass Support Vector Machines 

3.6 Summary 

In summary, this Chapter has provided a brief introduction of the data mining and 

machine learning concepts that this thesis revolves around.  Hopefully, a novice in the field now 

has enough background in order to understand the central concepts to this thesis.  Furthermore, 

we have provided partial derivations and explanations of three commonly used methods for 

classification problems: k nearest neighbors, neural networks, and support vector machines.  

Each method has certain advantages and disadvantages associated with them.  We choose to 

explore all three methods for use as a baseline performance metric.  In general, if a method 

works for data mining problem, other methods should work too.  However their performance 

may vary to a certain degree.  By using several methods, we effectively check our work in order 

to present data mining as a viable option to explore for acoustic cardiopulmonary diagnosis.   
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Chapter 4  

Classifying Lung Sounds 

In Chapter 4, we examine the precise methodology in which we apply the techniques of 

machine learning and data mining to extract reasonable information from the adventitious lung 

sounds data set.  This chapter will examine how we implement the steps to build a classifier as 

we described in Figure 3.4.  In particular, we discuss the development of the input features.  We 

also discuss frameworks that we use to explore the problem of diagnosing lung disorders based 

upon the computerized auscultation.   

First we classify the data using individual crackles only for both pair-wise and multi-class 

comparisons.  We call this methodology Method 1.  With this approach, we seek to answer the 

following question: does the underlying physiologic source of the crackle cause audible 

differences that cannot be picked up by the human ear?  The second approach combines the 

individual crackles and other adventitious sounds into cumulative features that describe breaths 

instead of just a single sound.  This is called Method 2.  In this framework, the learning 

algorithm seeks to makes a classification of the individual breaths.  This methodology gives us a 

much larger sample size than an analysis where each patient is summarized by a single feature 
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vector.  We also discuss other important factors such as determining training and testing sample 

sizes and various model validation approaches. 

4.1 Method 1 - Classifying Individual Crackles 

This method addresses only individual crackle features.  It has the smallest set of features 

and does not include any features describing the other adventitious lung sounds.  In this method, 

data obtained from the auscultation of squawks, wheezes, and rhonchi are left out.  By leaving 

this data out, we acknowledge the fact that we may not have enough acoustic information to 

predict diseases where these sounds play a predominant role such as asthma and COPD.  Not 

only is it the most basic as far as the algorithm development, it also is the most basic from a 

physician’s standpoint too.  It explores the fundamental differences between crackles. No clear 

common medical explanation of crackles is known, but it is hypothesized that crackles are 

generated by different processes and as a result have different acoustic characteristics. This 

method is predominantly used for diagnosing patients where crackles are the principal 

component.  The following subsections detail the feature definitions, training set selection, 

validation, and testing procedures developed for Method 1.   

4.1.1 Feature Definitions  

For Method 1, we develop features that are only based upon individual crackle sounds.  

Each individual crackle is fully defined by a single set of features.  The features have been 

defined and derived by Andrey Vishedskiy et al. of Stethographics, Inc.  They have been 

recorded by the STG-1602 multi-channel lung sound analyzer. The multi-channel approach lets 

us find the precise location on the chest where the waveforms occur. Figure 4.1 shows a close-up 

of a typical crackle waveform.  Several characteristics of the waveforms are labeled.  The crackle 

analysis starts by identification of the crackle’s highest deflection or highest peak.  The half 

period to the left of the highest peak is marked as T1.  The half period to the right of the highest 

peak is marked as T2.  Crackle frequency is calculated from four consecutive half periods, with 

T1 as the first half period.  Crackle amplitude is marked with A1, A2, etc.  Crackle polarity is 

defined positive if the highest peak is upward and negative if the peak is downward. 
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Figure 4.1 Example Crackle Waveform with Labels 

These labels are referred to in Table 4.1 which lists all of the features used to design this 

experiment.  All in all, 22 features are used to describe each crackle.  They are listed with brief 

descriptions in Table 4.1.   

Feature Name Description 

Zero Crossings (ZXS) 
The number of times the crackle waveform crossed the 
baseline 

T1 First half period 

T2/T1 Ratio of the 2
nd

 and 1
st

 half periods 

Half Period Variability (Tvar) Standard Deviation {T1,T2,...,Tn} /Mean {T1, T2,..., Tn} 

Frequency (Freq) 
Crackle frequency calculated from 4 half periods: T1, T2, T3, 
and T4 

Timing 
Discrete values of 1,2,3 represent the phases (early, mid,  
and late) of inspiration, whereas 4,5,6 represent expiration 

Crackle Transmission Coefficient (CTC) 
The degree of crackling sound transmission through the 
ipsilateral chest, as calculated from crackle family observation 
by multiple microphones 

Amplitude Amplitude of the highest peak (arbitrary units) 

A2/A1 Ratio of the 2
nd

 and 1
st

 amplitudes 

A3/A1 Ratio of the 3
rd

 and 1
st

 amplitudes 

Amplitude Variability (Avar) Standard Deviation {A1,A2,...,An} /Mean {A1, A2,..., An} 

PolarityUp Direction of the highest peak (1 or 0) 
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Feature Name Description 

PeakSharpness The measure of the sharpness of  the highest peak 

DelayDist_Intercept, DelayDist_Slope, 
& DelayDist_Correlation 

For each crackle family, the delay between daughter crackles 
and mother crackles was analyzed as a function of linear 
distance between the corresponding microphones.  A linear 
regression was performed to find the intercept, slope, and 
correlation.   

AmplDist_Intercept,AmplDist_Slope, 
& AmplDist_Correlation 

For each crackle family, the amplitude of the daughter crackles 
was analyzed as a function of linear distance between the 
daughter crackle microphone and the mother crackle 
microphone.  A linear regression was performed to find the 
intercept, slope, and correlation. 

DelayAmpl_Intercept, 
DelayAmpl_Slope, 
& DelayAmpl_Correlation 

For each crackle family, the delay between daughter crackles 
and mother crackles was analyzed as a function of crackle 
amplitude.  A linear regression was performed to find the 
intercept, slope, and correlation. 

Table 4.1 Crackle Feature Definitions Used in Method 1 

4.1.2 Data Pre-Processing and Standardization 

To be able to process the data, we first needed to take certain steps in order to “clean” it.  

All crackles with missing attributes, or errors were deleted.  Furthermore, algorithms perform 

more efficiently if the data is scaled before a model is trained.  Scaling the data also has the 

added effect that no feature is represented by values of a significantly higher order of magnitude 

than the other features.  Since the features can be represented on a similar scale, no preference is 

given to an individual feature.  Most standardizations map the values to a range of [-1, 1] or 

[0, 1].  We chose to normalize the data between [-1, 1].  We used the following standardization 

for all features: 

  (4.1) 

where the minj and maxj terms represent the minimum values of x across all samples for the 

feature to be standardized.  x represents the particular value, and s is the standardized equivalent 

of this value. 

 The total size of the data sets for Method 1 is shown in Table 4.2. 
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Disease 
Number of 

Patients 
Number of 

Crackles 

PN 123 5518 

CHF 95 3204 

IPF 39 4362 

COPD 96 2463 

Asthma 64 1118 

Normals 187 1286 

Table 4.2 Number of Crackles in Data Sets 

4.1.3 Training Set Selection   

In order to select a training set, we first make the assumption that all crackles are 

independent events.  The basis for this assumption is that each crackle occurs as a result of an 

isolated physiological process.  In Method 1, it does not matter which breath, or which patient a 

crackle occurred in for the purposes of making a test set.   

 To generate the training set for the pair-wise and multi-class comparisons, we ensured 

that an equal number of crackles for each disease were placed in the training set.  We split the 

data in accordance with the following percentages:  70% Training, 15% Validation, and 15% 

Testing.  To maintain the idea of training on an equal number of crackles for each disease, the 

percentages were taken from the disease with the fewest number of crackles.  The idea behind 

training on a balanced training set is that no class receives preferential treatment by the learning 

algorithm due to its prevalence in the training set.  In the case of an unbalanced training set, the 

algorithm may be able to achieve very low training error rates by classifying everything into the 

dominant class.  However, this classifier will not be able to generalize well with the data 

withheld in the testing set.   

 One exception to this equal size rule is that the testing sets will not be of the same size.  

The test sets are composed of all samples not chosen to be a part of the training or validation 

sets.  Since the sets are initially imbalanced, one test set may be of much larger size.  However, 

this has no affect on the training of the algorithm.  Figure 4.1 provides an illustration of the 

splitting process used in Method 1. 
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Figure 4.2 Splitting of Data to Form a Balanced Data Set 

 In some cases, we were not able to take the full 70% of the crackle data to train on.  The 

large number of crackles for some diseases caused the computer to run into memory storage 

issues especially when conducting multiple trials.  Therefore, instead of using a full 70%, a 

smaller percentage to split the data was chosen to speed up the training process yet still maintain 

a balanced training set.  

4.2 Method 2 – Classifying Individual Breaths 

In the second method of training the data set, we perform the analysis based on 

information that has been aggregated by breath.  This methodology gives us the benefit of 

reducing the sample size to something manageable by the computer, but it doesn’t reduce the 

sample size too much as would be the case if the patients were combined at the patient level.  

There are only 39 unique patients for the IPF data set, and this sample size would be very small 

for a machine learning analysis.  Combining features into a breath level analysis maintains the 

ideals of being able to classify patients. Each breath is associated with the patient’s disease and 

will be classified as such. As with Method 1, a voting schema will be applied in order to make a 

diagnosis on the patient level.  Unlike Method 1, we use the full amount of acoustic data 

including wheezes, rhonchi, and squawks.  Additionally, we derive several distribution features 

that define the location and distribution of crackles.  All in all, this leads to many more features 

for the algorithms to process than were available in Method 1. 
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4.2.1 Feature Definitions  

In Method 1, since there were only 22 features, we were able to describe them all easily 

within Table 4.1.  Adding the features to characterize the squawks, wheezing, and rhonchi 

increases the number of acoustic features to 91.  These will be fully listed in an appendix.  One 

quick note about the additional sound features is that their features need to be defined at the 

patient level.  As a result, special considerations need to be applied when portioning the data set.  

Otherwise, identical feature vectors could exist in both the training, validation, and testing phases 

which will produce overestimates of the accuracy.   

 The 22 features for each crackle are modified by taking the median value of all the 

crackles that occur within a breath.  The median was used to calculate the central tendency of the 

crackles because it is a more robust estimate than the mean.  Using a median would eliminate 

potential outliers from the data set.   

On top of these 91 features are an additional 18 features that describe the distribution of 

the sounds across the chest.  Figure 4.3 helps to describe the distribution.  In the figure, four 

quadrants are labeled Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR).  

Crackles that occur in the specific regions are counted and utilized as a new feature.   

 

Figure 4.3 STG-1602 Drawing for Distribution Features 

Another thing seen on the picture is the distances used to measure an artificial distance between 

the channels.  The goal here is to be able to calculate the maximum distance between crackles as 
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recorded by the mother channel.  An imaginary grid is placed over the microphones and each 

microphone is said to be one unit apart horizontally and vertically.  Therefore a diagonal distance 

has measurement  as can be seen in Figure 4.3.  Specific definitions of the distribution 

features can be given in Table 4.3. 

Feature Name Description 

Num_crackles 
The total number of crackles per breath as 

detected by the computer 

Num_TL, Num_TR, Num_BL, 

Num_BR 

These 4 features count the total number of 

crackles observed in each quadrant of the chest.  

Together they add up to the total number of 

crackles per breath 

Percent_Diff_TL_TR, 

Percent_Diff_TL_BR, 

Percent_Diff_TL_BL, 

Percent_Diff_TR_BL, 

Percent_Diff_TR_BR, 

Percent_Diff_BL_BR 

Based off of the 4 features mentioned 

previously, these features represent a 

comparison between quadrants.  Each 

percentage is a percent difference in the number 

of crackles between respective quadrants. 

Max_MCx, Max_MCy  

These features are similar to the previous, 

except they are defined based upon which 

channel microphone picked up the crackle.  

Distances are defined accordingly. 

Max_X_dist, Max_Y_dist, 

Max_Z_dist, Max_XYZ_dist 

These features calculate the distances that 

crackles occur from each other in 3 dimensional 

space.  There are separate features for x, y, and 

z planes.  One feature also records a maximum 

distance across all 3 dimensions. 

Table 4.3 Definitions of Distribution Features 

The last row in the table describes four more features.  These features were derived from the 3D 

Visualization shown in Figure 2.2 and try and capture the maximum spreads of the crackles in 

3D space. 

4.2.2 Data Pre-Processing and Standardization 

Data was read from the same data files as with Method 1, so no further cleaning of the 

data was required.  Some patients did not display any crackles, but they had other adventitious 

lung sounds.  As a result, they could only be represented as one breath since that is how those 

sounds were modeled by Stethographics.  Furthermore, all crackle features and distribution 

features will be “0” for the breaths without any crackles. 



65 

All data was standardized by using the same method presented in Section 4.1.2.  The 

number of breaths for each disease is shown in Table 4.4. 

Disease Number of 
Patients 

Number of 
Breaths 

PN 123 566 

CHF 95 423 

IPF 39 183 

COPD 96 379 

Asthma 64 238 

Normals 187 571 

Table 4.4 Number of Breaths in Data Sets 

4.2.3 Training Set Selection   

Selecting a training set occurred in a slightly different manner for Method 2.  Instead of 

simply selecting 70% of the breaths for training as in Method 1, we needed to take special care to 

ensure that all breaths belonging to a patient ended up in the same set whether that is training, 

validation, or testing.  The reasoning behind this is that we can no longer make the independence 

assumption.  Individual crackle events are independent, but the other lung sounds are calculated 

per patient.  This means that identical feature vectors are repeated for each breath.  These are 

obviously not independent.  Therefore, the training sets must be designed in a way as to keep all 

breaths together that come from the same patient.   

To partition these breath samples into the sets we need, we still prefer to keep the 

70/15/15 ratio we had earlier.  This time, to implement the splitting, we take 70% of the number 

of the patients, and then put all breaths associated with that patient into the training set.  The 

same goes for both validation and testing sets.  Ideally, the number of breaths in each set will be 

somewhat equal since the number of patients in each set is the same.  Still, there are no 

guarantees that the data will be split equally with this approach.   

4.3 Validation and Testing 

Although it hasn’t been formally defined yet within this thesis, validation is an important 

step towards developing a model that generalizes well.  In Figure 3.4, validation falls under the 
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action block of “Tune Parameters.” Validation is the process of varying the model parameters in 

order to fine tune the models predictive ability.  After a model is trained using the training data, 

the generalization performance is measured based off of the validation data set.  At no point does 

the model ever “see” the data withheld for testing.  After many iterations and variations, a final 

parameter is decided on.  Then this model is used to predict the classes of the data completely 

withheld in the testing set.   

Each of our three algorithms had several parameters that required tuning.  For k nearest 

neighbors, the number k ,of nearest neighbors varied from 1 to 17.  Only odd numbers for k were 

used to prevent ties.  Neural networks required the modification of the number of nodes in the 

hidden layer.  Finally, support vector machines required the validation of the cost parameter C, 

the type of kernel used, and also parameters associated with the kernels such as the parameter p 

for the polynomial kernel in Equation 3.18 and the parameter σ for the width of the RBF kernel.  

We implemented cross validation manually, that is changing the parameters by hand, and then 

comparing results.  This process was not automated in our learning algorithms.  The following 

table lists our validation choices for the aforementioned parameters.   

Algorithm Parameter Possible Values 

k Nearest Neighbors k 1, 3, …, 17 

Neural Networks # of Neurons 10,15,20, …, 40 

SVM C {0.1, 0.25, 0.5, 1, 1.5, 5, 10} 

polynomial p 1, 2, 3 

RBF σ {0.1, 0.15, 0.2, 0.3} 

Table 4.5 Parameter Values for Validation 

After the best parameters for each method are selected, the model is put to the test by classifying 

the testing data.  The tests are repeated 50 times so that an average performance metric can be 

estimated.  The datasets are the exact same ones as used in the validation process.  All results are 

discussed in Chapter 5. 
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4.4 Voting Schema 

 One further item is the application of a voting scheme.  Although predicting which 

disease a crackle resembles is useful, it is much more beneficial to be able to make a 

recommendation to a doctor as to what disease a patient might have. To make a recommendation 

at the patient level we rely on a voting scheme. The voting scheme uses a “majority wins” rule to 

extend the classifications of crackles and breaths to that of patients. In Method 1, the 

classification of individual crackles, we seek to diagnose all patients that have at least one 

crackle in the testing set.  Every crackle in the testing set casts a “vote” for the disease it most 

closely resembles.  A patient is diagnosed by the disease that gets the most votes. In Method 2, a 

very similar approach is taken but instead of voting by each crackle, the votes are cast by 

breaths.  A patient is assigned to a disease class based on the total number of votes cast for the 

specific disease by a breath.  This novel approach allows us to extend the pair-wise crackle and 

breath tests to a patient level diagnosis.   

4.5 Computer Implementation Notes 

We first implemented all tests via an open source software known as Weka [44].  

Although important benchmarks were achieved in this software, in order for us to achieve the 

repeatability we desired and also the large number of training runs, we implemented our 

methodology in MATLAB.  The algorithms k nearest neighbors and neural networks were 

implemented through internal toolboxes within MATLAB.  A more efficient implementation of 

the SVM algorithm is provided through the SVM
light

 program developed by Thorsten Joachims 

[45].  An interface to use the program in MATLAB is provided by Tom Briggs [46].  Weka also 

was used as a check for the models developed in MATLAB. 

4.6 Summary 

This chapter has shown how we connect the data mining and machine learning 

techniques presented in Chapter 3 to the computerized auscultation presented in Chapter 2.  We 

discussed the derivation of several features, and also discussed our validation and testing 
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approaches.  We also presented two pair-wise methodologies that will be used to explore the 

process of diagnosing a patient based off of computerized auscultation. The first seeks to classify 

individual crackles, and the second classifies breaths. We also introduced a voting schema that 

will be used to make diagnoses at a patient level.   
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Chapter 5  

Results and Discussion 

In this chapter, we present the results and demonstrate the feasibility of computerized 

auscultation.  We will show that we have achieved good recognition performance through pair 

wise comparisons between diseases.  We also will show that interstitial pulmonary fibrosis 

patients and asymptomatic patients are well separated when performing these binary 

comparisons. Furthermore, we show that IPF and normals can be distinguished very easily from 

all other diseases in a multi-class classification. We will also discuss combining clinical data 

with the acoustic data as a way to improve performance.   

We begin the chapter by defining the metrics we use to summarize our findings.  We then 

present results for the classification of the individual crackles and also the classification of 

breaths. The results are presented for both pair-wise and multi-class classifications.   
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5.1 Classification Metrics 

Before we present the results, we first must explain some terminology that we use to 

compare the different classifiers and ultimately gauge the overall performance of the 

computerized auscultation.  The following performance metrics will be introduced here: 

sensitivity, specificity, and accuracy.   

To introduce these terms, we provide a brief example.  Suppose we want to set up a test 

that differentiates patients as either having pneumonia or being normal.  PN will be the positive 

class, and normal will be the negative class.  If a patient has PN and is predicted to have PN, it is 

a True Positive (TP).  However, if the patient is misdiagnosed, it is a False Negative (FN).  If a 

patient is normal and classified as such, it is called a True Negative (TN).  Similarly, if the 

normal patient is predicted to have pneumonia, it is a False Positive (FP).  Accuracy measures 

the total number of correct predictions out of the entire tested population.  It is simply 1-error, 

with error as defined in Chapter 3.  However, this metric may not be the best measurement since 

it can be skewed by the amount of each class in the testing set.  For instance, if there were 90 PN 

patients and 10 normal patients in a test set, a classifier could achieve a seemingly good accuracy 

of 90% by classifying all patients as PN.  100% of the PN patients were classified correctly, but 

0% of the normal patients.   

Accuracy is still a useful metric, but more detailed measurements are required to ensure 

the classifier is balanced; that is predicts both classes with similarly good performance.  For this 

we turn to sensitivity and specificity.  Sensitivity is the proportion of all positive patients that 

tested positive to the total number of positive patients in the study.  It is expressed as: 

  (5.1) 

Similarly, specificity measures the ratio of all negative patients classified as such to the total 

number of negative patients.  More explicitly: 

  (5.2) 

These two measures will be used to ensure we do not have any unbalanced classifiers. 
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5.2 Method 1 – Classifying Individual Crackles 

The results of the pair-wise comparisons between diseases using the defined metrics are 

shown in Table 5.1. The results in this section are for Method 1. Method 1 focuses on classifying 

the individual crackles whereas all other sounds are left out.  Comparing IPF vs. PN yields the 

same result as PN vs. IPF, so there are fifteen total comparisons to run.  In the table, each of the 

numbers is the average classification performance of the respective classifiers on fifty randomly 

generated data sets. Fifty tests were considered to get a good estimate on the actual performance 

of the classifier. All three learning algorithms (support vector machines, neural networks, and k 

nearest neighbors are presented. To read the table, the positive class is listed in the first column 

and the ability of the algorithm to predict that disease is associated with sensitivity.  For the 

negative class, it is listed second and associated with specificity. All results are color coded for 

viewing convenience.  A red tint indicates good performance, yellow mediocre performance, and 

blue poor performance. 



72 

  
 SVM 

Neural 
Networks 

k Nearest 
Neighbor 

Positive 
Class 

Negative 
Class 

Sens Spec Acc Sens Spec Acc Sens Spec Acc 

IPF 

PN 0.798 0.715 0.743 0.767 0.729 0.743 0.775 0.733 0.747 

CHF 0.799 0.726 0.777 0.753 0.691 0.732 0.767 0.734 0.757 

Asthma 0.798 0.768 0.797 0.783 0.724 0.778 0.777 0.735 0.773 

COPD 0.802 0.713 0.789 0.735 0.738 0.736 0.759 0.694 0.746 

Normals 0.742 0.747 0.742 0.741 0.751 0.742 0.74 0.655 0.732 

PN 

CHF 0.484 0.684 0.525 0.563 0.614 0.576 0.583 0.613 0.59 

Asthma 0.662 0.554 0.658 0.625 0.587 0.623 0.619 0.626 0.619 

COPD 0.478 0.743 0.516 0.581 0.636 0.590 0.584 0.62 0.589 

Normals 0.705 0.727 0.707 0.707 0.715 0.708 0.656 0.638 0.655 

CHF 

Asthma 0.663 0.611 0.660 0.612 0.574 0.608 0.647 0.616 0.644 

COPD 0.548 0.593 0.562 0.534 0.610 0.559 0.6 0.6 0.6 

Normals 0.721 0.646 0.715 0.675 0.662 0.673 0.649 0.621 0.646 

Asthma 
COPD 0.592 0.675 0.667 0.621 0.613 0.619 0.587 0.637 0.63 

Normals 0.631 0.739 0.703 0.705 0.598 0.641 0.617 0.663 0.647 

COPD Normals 0.681 0.604 0.671 0.638 0.600 0.630 0.629 0.601 0.625 

Table 5.1 Complete Results for Classifying Individual Crackles 

 Idiopathic pulmonary fibrosis crackles were separated the best out of all six classes.  A 

crackle is correctly identified as IPF nearly 80% of the time. These numbers are seen in the first 

five rows. The ability to diagnose IPF acoustically is consistent with previously reported 

opinions [23].  Separating IPF crackles with high accuracy is very important within the medical 

community since it is a very rare disease and as a result it is commonly misdiagnosed as another 

pulmonary condition.  As a result, this terminal condition could set in even faster without 

appropriate treatments. 
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Furthermore, asymptomatic patients (normals) were classified fairly well.  They can be 

separated from IPF, PN, CHF, and asthma with over 70% accuracy using support vector 

machines. Normals separate from COPD with 67.1% accuracy.  This is somewhat surprising 

because adventitious lung sounds aren’t normally associated with “healthy” patients.  Still, the 

adventitious lung sounds are present and the crackles provide enough subtle differences to make 

a classification.  CHF, COPD, and asthma were much harder to classify.  This is largely because 

these diseases are associated more so with wheezes and rhonchi than with crackles.  The worst 

comparisons by far were PN vs CHF (52.5% accuracy for SVM) and PN vs COPD (51.6% 

accuracy for SVM).  

We compared the three algorithms and found that they all perform somewhat 

comparably.  Figure 5.1 compares the sensitivities and specificities of support vector machines, k 

nearest neighbors, and neural networks for the IPF vs. COPD comparison. 

 

Figure 5.1 Sensitivity and Specificity of 10 Data Sets for IPF vs COPD Comparison 

Each point in the figure represents one individual classification’s sensitivity and specificity.  

There are ten points for each algorithm which represent ten different trained models.  Each 

algorithm was trained and tested on the same data sets. There are several test runs where the 

neural network does not converge and results are very erratic.  Other than that, the performance 

of support vector machines, neural networks, and k nearest neighbor are fairly close to each 

other. 
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 To further explore the training error with neural networks we plot the training points 

associated with the two node output layer.  Figure 5.2 shows two graphs generated from these 

output nodes.  In the training of the neural network, we use a unary encoding scheme according 

to the literature [37].  With a two-neuron output layer, the network tries to model the positive 

class as [1 0] and the negative class as [0 1].  As the network trains, the classification points 

move towards the respective output pair.  This formulation makes for a convenient 2-D plot.  The 

graph on the left is an example of a neural network that converged.  Each point represents a 

single crackle classification.  They are very small since there are over 2,000 points in each class.  

The decision boundary is represented by the thick black line.  Ideally, all blue points would lie to 

the right of this line and the red points would lie to the left.  Instead of achieving a clean 

separation, the right network is erratic and the placement of the points makes no sense.  As a 

result, all neural networks that appeared in this manner were disregarded in the calculation of the 

average prediction performance in Table 5.1 and in the rest of the chapter. 

 

Figure 5.2 Two Neural Networks, One of Which Does Not Converge 

5.3 Diagnosis of Patients by Voting 

Here we discuss the voting mechanism originally introduced in Section 4.4 which will be 

used to make predictions at a patient level. We extend the classification of the individual crackles 
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to a more useful patient diagnosis.  With the decent performance of the individual crackle 

classifications, we show even better performance when predicting the diagnosis of a patient.  

Patients who have crackles exhibit some that possess characteristics of a certain lung disease 

whereas others may be indistinguishable.  The expectation is that the majority of the crackles 

contain some distinguishable information that increases separation by using voting.  The results 

confirm our assumptions and are shown in Table 5.2 below.   

   
SVM Neural Networks 

k Nearest 
Neighbor 

Positive 
Class 

Negative 
Class 

Sens Spec Acc Sens Spec Acc Sens Spec Acc 

IPF 

PN 0.819 0.875 0.862 0.778 0.905 0.875 0.801 0.918 0.889 

CHF 0.799 0.852 0.835 0.750 0.800 0.785 0.826 0.879 0.863 

Asthma 0.778 0.823 0.802 0.780 0.779 0.781 0.837 0.852 0.845 

COPD 0.782 0.854 0.828 0.711 0.903 0.843 0.775 0.831 0.812 

Normals 0.665 0.811 0.768 0.654 0.786 0.757 0.765 0.720 0.731 

PN 

CHF 0.347 0.751 0.509 0.556 0.694 0.614 0.640 0.739 0.682 

Asthma 0.741 0.570 0.697 0.699 0.619 0.677 0.756 0.708 0.742 

COPD 0.298 0.829 0.496 0.483 0.731 0.584 0.599 0.748 0.657 

Normals 0.654 0.795 0.725 0.736 0.786 0.762 0.732 0.689 0.710 

CHF 

Asthma 0.791 0.620 0.736 0.693 0.594 0.660 0.762 0.679 0.733 

COPD 0.492 0.688 0.579 0.539 0.705 0.622 0.704 0.654 0.680 

Normals 0.775 0.688 0.730 0.740 0.716 0.726 0.771 0.628 0.691 

Asthma 
COPD 0.559 0.709 0.660 0.354 0.793 0.632 0.611 0.700 0.668 

Normals 0.605 0.791 0.742 0.731 0.652 0.673 0.661 0.724 0.707 

COPD Normals 0.739 0.646 0.690 0.665 0.633 0.646 0.743 0.629 0.680 

Table 5.2 Voting Results for Crackle Only 

 For classes such as IPF where the individual crackle classification was good, the voting 

results perform even better.  If roughly 75% of all crackles can be confirmed or rejected as being 

similar to the crackle form of an IPF crackle, the voting schema incorporates the high success 
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rate and increases the chances of successfully diagnosing a patient.  For example, in the IPF vs 

PN comparison, individual crackles were distinguished by support vector machines with 74.3% 

accuracy.  Applying the voting increased the accuracy to 86.2%.  On the contrary, in cases where 

the individual crackles were not as easily classified, the errors seem to magnify.  This occurs in 

the PN vs CHF and also the PN vs COPD comparisons.  Classification accuracy of PN vs. CHF 

drops from 52.5% to 50.9% with voting and drops from 51.6% to 49.6% in the PN vs COPD 

comparison. Since the crackles themselves possessed very little recognition, the voting schema 

could not help the classification performance.  Still, the voting approach has shown a significant 

difference in crackle prediction performance.  Figure 5.3 shows the changes in classification 

performance after the voting scheme has been applied to the output of the SVM model. 

 

Figure 5.3 Changes in Classification Accuracy with Voting by Crackle 

Although the accuracies shown in the figure are not necessarily high enough for complete 

diagnostic use, they can be used in conjunction with other methods for a doctor’s final diagnosis.  

The highest classification accuracies at the patient level are in seen in all the IPF comparisons.  It 

is accurately predicted at least 75% of the time with all algorithms.  
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 One particular advantage of classification by using only crackles is that the listening 

device can likely be simplified.  Instead of a multi-channel pad, a single stethoscope with a 

microphone embedded in it is able to capture the differences within the individual crackle 

sounds.  This has the added benefit of being very familiar to a patient.  A doctor would be able to 

apply the smart stethoscope in the same manner as a traditional stethoscope.  It would not be 

much of a departure from normal medical practice so it could possibly ease a patient’s transition 

towards computerized auscultation.   

 All in all, Method 1 provides good classification for IPF and fairly good classification for 

asymptomatic patients indicating that crackle features for these two diseases are distinct. On the 

contrary, other diseases are much harder to classify by using crackles.  PN and CHF are two 

diseases that are known for having crackles, but still their results indicate they are almost 

indistinguishable using this analysis. Diseases like asthma and COPD still have crackles, but 

their dominating features are that of wheezes and rhonchi. Incorporating these features will aid in 

diagnosing theses diseases.  

5.4 Method 2 – Classification by Using Breath Analysis 

We now shift our focus to the second method of analysis, combining features per breath.  

We will make classifications based on full breaths instead of just individual crackles as before. 

This time, although we still continue to use neural networks and k nearest neighbors, we shift our 

focus to that of support vector machines.  We do this because they seemed to have similar 

performance capabilities in Method 1, but the support vector machines took much less time to 

compute.  When we add the full adventitious lung sounds data set, the number of features goes 

from 22 to 107.  Training hundreds of neural networks with 107 features would take a very long 

time.   

 To study the effectiveness of classification of breaths, we perform multiple training runs 

on feature subsets of the full adventitious lung sound data.  Doing this incrementally provides 

insights as to which data are the most important in making a classification.  The subsets are listed 

in the Table 5.3. 
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Subset Name 
Number of 
Features Description 

Crackle Only 23 

This set contains all variables in 

Method 1, but combines them as a 

median according to their breath. 

Crackle and Distribution 41 

This set contains the Crackle Only set 

and also the distribution features 

mentioned in Section 4.2.1. 

Additional sounds 66 

This set contains all acoustic features 

not used in Method 1 and are typically 

computed as an average at the patient 

level. Features represent crackles, 

wheezes, rhonchi, and squawks. 

Full Data 107 
This is a combination of the all 

previously mentioned sets.   

Table 5.3 List of Data Subsets Used to Test Method 2 

The results are presented in Table 5.4 and Table 5.5 in a similar fashion as before.  All fifteen 

pair-wise comparisons are shown in two consecutive tables.  The first table contains the Crackle 

Only and Crackle and Distribution feature subsets. The second table has the Additional Sounds 

and the Full Data feature subsets. Tables are also provided in an appendix that shows a breakout 

of each class versus all five other classes which may be easier to read, but are too lengthy for 

inclusion here. 
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 Crackle Only 
Crackle and 
Distribution 

 
 Sens Spec Acc Sens Spec Acc 

PN 

CHF 0.558 0.470 0.527 0.665 0.537 0.581 

IPF 0.766 0.785 0.769 0.787 0.799 0.789 

Asthma 0.740 0.522 0.705 0.841 0.402 0.770 

COPD  0.644 0.470 0.590 0.771 0.314 0.629 

Normals 0.690 0.870 0.753 0.827 0.781 0.797 

CHF 

IPF 0.784 0.815 0.790 0.802 0.786 0.800 

Asthma 0.672 0.459 0.621 0.763 0.367 0.666 

COPD  0.655 0.405 0.529 0.809 0.274 0.545 

Normals 0.631 0.794 0.674 0.842 0.779 0.826 

IPF 

Asthma 0.838 0.789 0.802 0.824 0.850 0.843 

COPD  0.811 0.746 0.758 0.744 0.820 0.807 

Normals 0.821 0.678 0.694 0.831 0.852 0.851 

Asthma 
COPD  0.509 0.612 0.583 0.436 0.672 0.609 

Normals 0.668 0.555 0.571 0.649 0.587 0.640 

COPD Normals 0.735 0.603 0.634 0.693 0.725 0.717 

Table 5.4 Crackle Only and Crackle and Distribution Datasets for SVM by Breath 

The per breath analysis on the crackle only and the crackle and distribution data sets 

leads to very similar results to that of Method 1.  IPF and normals were separated the best out of 

all six classes.  IPF could be separated from CHF and asthma with 80% accuracy and separated 

from COPD and PN with 75% accuracy with the Crackle Only feature subset.  Adding 

distribution features yields nearly a 5% improvement for the comparison of IPF with asthma and 

COPD.  Furthermore, adding the distribution features greatly aid the classification of IPF vs 

normals. Classification accuracy jumps from 69.4% to 85.1% for this comparison.  

As in Method 1, COPD and asthma are very difficult to classify by using only crackles 

and their distribution about the chest.  Adding the other adventitious sounds improve the 

classification accuracy as shown in Table 5.5.   
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Additional Sounds Full Data 

  

Sens Spec Acc Sens Spec Acc 

PN 

CHF 0.599 0.639 0.613 0.540 0.696 0.588 

IPF 0.851 0.776 0.843 0.847 0.777 0.839 

Asthma 0.757 0.626 0.736 0.763 0.617 0.739 

COPD  0.714 0.704 0.711 0.708 0.675 0.698 

Normals 0.884 0.880 0.883 0.891 0.896 0.893 

CHF 

IPF 0.800 0.796 0.800 0.806 0.783 0.804 

Asthma 0.776 0.713 0.760 0.794 0.667 0.763 

COPD  0.751 0.681 0.717 0.791 0.667 0.730 

Normals 0.847 0.819 0.840 0.838 0.825 0.835 

IPF 

Asthma 0.911 0.856 0.871 0.889 0.873 0.877 

COPD  0.834 0.846 0.845 0.803 0.840 0.835 

Normals 0.861 0.824 0.828 0.841 0.839 0.840 

Asthma 
COPD  0.657 0.736 0.715 0.668 0.729 0.713 

Normals 0.804 0.824 0.821 0.712 0.922 0.891 

COPD Normals 0.845 0.932 0.912 0.843 0.928 0.908 

Table 5.5 Other Sounds and Full Datasets for SVM by Breath 

Adding the remaining sounds (wheezes, rhonchi, squawks) to supplement the crackle features 

clearly improves classification performance. Most diseases can be distinguished with at least 

75% accuracy. The PN and CHF comparison is the most difficult with accuracy only around 

60%. Furthermore, COPD remains the most difficult disease to predict with accuracies around 

70% for all pair-wise comparisons with the exception of normals and IPF.  

One important trait of the SVM classifiers which can be seen in Table 5.5 is that the 

sensitivity and specificity are close to each other which indicate that the model is well trained.  

Because of this, accuracy can be used as a balanced assessment tool regardless of the number of 

breaths of each disease in the test set.  Figure 5.4 plots the accuracies for all four data sets:  

Crackle Only, Crackle and Distribution, Additional Sounds, and Full Data.  
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Figure 5.4 Pair-Wise Accuracies for Different Data Sets 

Accuracies based on only the crackle features were by far the worst performing for all 

data sets. Adding distribution information features to the crackle data moderately helped the 

classification. The Additional Sounds data set and Full Data were by far the most important to 

make a diagnosis. With only a few exceptions, using all the sounds proved to be beneficial for 

the performance of the algorithm. The results show that all recorded adventitious lung sounds are 

important in making a lung disease diagnosis.  

5.5 Method 2 – Voting Applied to Classification of Breaths 

In the previous section, we show that classification based on the set of all adventitious 

lung sounds is much better than the data sets that rely on crackles only. We again implement the 

voting mechanism to further improve the classification accuracy of our models and to bring the 

diagnosis to the patient level. We present the voting results for the Full Data set here in Table 5.6 

whereas the rest of the data sets are shown in the appendix.  
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Full Data 

  

Sens Spec Acc 

PN 

CHF 0.540 0.695 0.592 

IPF 0.875 0.739 0.860 

Asthma 0.750 0.647 0.731 

COPD  0.681 0.709 0.690 

Normals 0.910 0.867 0.898 

CHF 

IPF 0.840 0.742 0.825 

Asthma 0.791 0.653 0.753 

COPD  0.752 0.698 0.725 

Normals 0.870 0.795 0.856 

IPF 

Asthma 0.848 0.881 0.873 

COPD  0.756 0.856 0.841 

Normals 0.842 0.849 0.849 

Asthma 
COPD  0.689 0.718 0.710 

Normals 0.674 0.916 0.887 

COPD Normals 0.829 0.946 0.924 

Table 5.6 Voting Results for Method 2 Performed on the Full Data Set 

Voting is performed by summing up the total number of breaths in a patient that pertain 

to a certain disease. In the case of a tie (ie. three breaths PN and three breaths CHF), the patient 

is listed as an uncertain diagnosis, but less than 1% of all patients fell into this category. As with 

previous tests, IPF and asymptomatic patients are the ones that can be diagnosed best with this 

technology. IPF is routinely separated with over 85% accuracy. Performing even better is the 

classification of the normal patients. They are separated from COPD with accuracy of 92.4% and 

from PN with accuracy of 89.8%.  Other diseases are much harder for the algorithms to predict
 

because of their similarity in sound patterns.  COPD and asthma is one such comparison. 

However, there still is some separation with classification accuracy of 71%. The PN and CHF 

pair-wise comparison remains the worst performing with an accuracy of only 59.2%.   
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Overall, voting did not have much of an impact when compared to the classification 

accuracies of the breaths.  Both the individual breath classification and the voting results are 

shown in Figure 5.5.  

 

Figure 5.5 Breath Classification Accuracy and Voting Accuracies 

For the most part, the classification was nearly the same.  One possible explanation of the 

similarities in performance is that a lot of the votes are unanimous decisions.  If enough of the 

patients have a unanimous vote, the differences in accuracy would be negligible.  For example, if 

the test set only has two patients with six breaths each, all twelve breaths could be classified 

correctly. This classification performance is 100% accuracy in both the breath classification and 

in the voting.  If this happens with many patients in the dataset, the results will be very similar as 

shown. Still, the voting methodology allows us to make diagnoses on a patient level so it remains 

a useful test.   

5.6 Addition of Clinical Data 

To further explore the available data, we add clinical features to the data set. These 

features are common measurements that a nurse collects as part of a patient’s initial care or 

which can easily be obtained. We add the following features to the dataset: 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

P
N

 v
s 

C
H

F

P
N

 v
s 

IP
F

P
N

 v
s 

A
st

h
m

a

P
N

 v
s 

C
O

P
D

P
N

 v
s 

N
o

rm
al

s

C
H

F 
vs

 IP
F

C
H

F 
vs

 A
st

h
m

a

C
H

F 
vs

 C
O

P
D

C
H

F 
vs

 N
o

rm
al

s

IP
F 

vs
 A

st
h

m
a

IP
F 

vs
 C

O
P

D

IP
F 

vs
 N

o
rm

al
s

A
st

h
m

a 
vs

 C
O

P
D

A
st

h
m

a 
vs

 N
o

rm
al

s

C
O

P
D

 v
s 

N
o

rm
al

s

Breath Accuracy

Voting Accuracy



84 

 Age 

 Gender 

 Temperature 

 Heart Rate 

 Respiratory rate (RR) 

 Systolic and diastolic blood pressure 

 Oxygen saturation levels 

 Presence or absence of cough (productive or not) 

 and white blood cell count 

We add these features since a doctor would have similar information when making a diagnosis. 

Adding them into the design of the smart stethoscope will improve the diagnostic ability of the 

machine since it incorporates the sounds and traditional medical examinations.  We still follow 

the same testing process as introduced in Section 5.4 with patients being summarized by breath. 

However, we perform it on a completely different data set.  For these tests, we eliminated all 

patients without the clinical information attached to their file.  Doing so greatly reduced the 

number of patients available for testing.  Less than half of all the patients had full clinical 

information.  The exact number of patients is shown in Table 5.7. By using only a subset of the 

clinical features and ignoring the respiratory rate and coughing features, we are able to increase 

the amount of patients by a fair amount.  These numbers are also shown in Table 5.7.  

Disease 
Total 

Patients 
Full Clinical 

No RR or 
Cough 

PN 123 60 87 

CHF 95 24 45 

IPF 39 2 2 

COPD 96 29 47 

Asthma 64 16 19 

Normals 187 0 0 

Table 5.7 Number of Patients with Clinical Data 

Figure 5.6 shows the results of training the support vector machine classifiers for pair-

wise comparisons of the clinical data set. We do not include the normals or the IPF patients in 

our testing since there are hardly any patients. We again study the full sound data as tested 

previously which includes all crackles, wheezes, rhonchi, squawks, and distribution features of 

the crackles around the chest.  In the figure these tests are denoted as “All Sounds.” The 

“Clinical Added” data sets contain the same patients, but with the added benefit of the clinical 
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information. Also, “Larger Set” denotes trials performed without the features of respiratory rate 

and the coughing features so more patients could be used in training the algorithm.  

 

Figure 5.6 The Effect of Clinical Data on the Classification Performance 

In the figure, the bars represent the average classification accuracy obtained by fifty 

classifications.  The first two columns (blue and red) show the benefit of adding more patients to 

the training data set.  By adding more patients, all pair-wise comparisons showed a significant 

improvement in performance.  More importantly, incorporating the clinical information also adds 

significant improvements in performance of the classification. With the exception of the PN vs. 

asthma comparison, the remaining comparisons show a minimum improvement of 5% over the 

exact same data without the clinical information.  

The computer that performs the auscultation could easily have a user interface where 

these parameters are input by a doctor or nurse so the algorithm could take advantage of them in 

predicting a patient’s disease.  Doing so will improve the classification performance as we have 

shown here.  
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5.7 Multi-Class Classification 

Extending the pair-wise comparisons to a multi-class comparison is an important step for 

medical practice. Instead of simply predicting one disease out of a choice of two, a multi-class 

diagnosis would help a doctor distinguish patients from all possible diseases. To perform the 

multi-class classification, we follow the multi-class formulations introduced in Section 3.5. We 

also maintained the same rules in selecting patients for the training set in order to keep the 

training set balanced as best as possible. A majority of the patients would end up in the test set 

since the small number of IPF patients would be a limiting factor. This may decrease 

performance marginally.  

We used support vector machines (Section 3.4.3) and k nearest neighbors (Section 3.4.1) 

for our modeling since the neural networks would take too long to train on such large data sets. 

We apply the learning algorithms to both the individual crackles (Method 1) and also the patients 

by breath (Method 2). For Method 2, only the full data set was used since it generally 

outperformed the other datasets.  All tests were performed by training the algorithms using the 

best parameters as found by validation in accordance with Section 4.3.  

The results of the multi-class formulations are summarized in Figure 5.7.  Only 

individual accuracies are displayed. In a multi-class scenario, sensitivity and specificity lose 

interpretability since there is no distinct positive or negative class. The left chart shows the multi-

class performance of the classification of individual crackles. The right chart shows the 

classification of the breaths.  The blue bars show the performance of the support vector machine 

one-vs-one method, the red bars are for the support vector machine one-vs-all accuracy, and 

finally the green bars represent the k nearest neighbor accuracy.  
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Figure 5.7 Multi-Class Accuracies for Method 1 (Left) and Method 2 (Right) 

Using Method 1, only IPF crackles had any recognizable prediction power, and even so, 

it is only about 60% accurate. Overall accuracy is very poor. Using the per breath framework, the 

classification accuracies for IPF and normals are around 70%. This is fairly good recognition. In 

a multi-class classification, it is unlikely to be able to outperform the individual pair-wise 

comparison since there are more choices for every disease to make. Instead of the binary option, 

it can now be any one of six classes. In spite of this, the IPF and normals are still separable.  

Surprisingly, for a very simplistic classifier, k nearest neighbor performs fairly well at 

nearly all choices for k. Clearly, as k gets larger, the ability to classify IPF and normals grows. 

This is due to an unknown group of features in multi-dimensional space where there is a 

bunching of these patients. It is more noticeable for higher values of k since the classes are likely 

intermixed.  Some region has a much higher concentration of IPF and the algorithm picks up on 

it. The effects of varying k on Method 2 are shown in the Figure 5.8. 
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Figure 5.8 Effects of Varying k for kNN Classification 

The thick black line is the overall accuracy. As k gets larger and larger, although the 

classification improves for the IPF and normal patients, it comes at the expense of the other 

diseases.  

5.8 Summary 

In this chapter, we presented the results and demonstrated the feasibility of computerized 

auscultation.  We have shown that we can separate diseases very well through pair-wise 

comparisons.  The best performing classes in the pair-wise comparisons were IPF and 

asymptomatic patients that we separated with accuracies near 85%.  Still, all diseases displayed 

some amount of recognition performance. We also added clinical data to the acoustic feature sets 

that resulted in further increases in performance.  Furthermore, we showed that IPF and normals 

can be distinguished very easily from all other diseases in a multi-class classification.  
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Chapter 6  

Contributions, Applications, and Future 

Work 

This chapter summarizes the contributions of this thesis and presents suggestions for 

future related research.  We present general comments concerning the test results and 

applications of this technology.  Finally, we provide recommendations for further work in the 

field. 

6.1 Thesis Contributions 

The goal of this thesis is to demonstrate the feasibility of a new diagnostic technique for 

cardiopulmonary disorders. We have shown that computerized auscultation by using a “smart” 

stethoscope can yield important diagnostic results. We have also shown that pair-wise 

comparisons can yield correct predictions with very high accuracy. In general, the best 

performing models were the ones that included all adventitious lung sounds. Crackles, wheezes, 
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rhonchi, and squawks are all necessary sounds in order to diagnose patients with 

cardiopulmonary disorders.  Furthermore, adding clinical information such as heart rate, 

respiratory rate, and temperature to the models increases performance significantly.  Also, 

adding features related to the distribution of the crackles around the chest similarly improve 

classification performance. 

This research has made the following contributions: 

 Shows that multi-channel lung auscultation is a viable method for medical 

research. 

 Shows that interstitial pulmonary fibrosis crackles are distinguishable from 

crackles of other diseases using acoustic analysis. 

 Demonstrates that most pairs of diseases can be separated based on sounds, 

including asthma and chronic obstructive pulmonary disease.  Pneumonia and 

congestive heart failure patients can be separated by incorporating acoustic and 

clinical data.  

 Introduces a hybridized approach to data mining that combines data from multiple 

sources to make a diagnosis.   

 Shows that interstitial pulmonary fibrosis and asymptomatic patients can be 

correctly classified when several diseases are possibilities. 

6.2 Applications 

It is not uncommon for doctors to misdiagnose patients even when they have traditionally 

strong diagnostic tests such as chest x-rays and computed tomography scans available. 

Furthermore, diagnoses can be hard to make particularly in the intensive care setting.  In cases of 

doubt, the patient is often treated for both diseases which can be costly and harmful to the patient 

because of over medicating. The “smart” stethoscope will help resolve some of these 

indistinguishable comparisons. 

Computerized auscultation via the “smart” stethoscope can be used in a variety of 

settings including remote telemedicine, in-home patient monitoring, and medical outreach.  

Remote telemedicine will be useful in any situation where a pulmonologist is not readily 

available.  The “smart” stethoscope could provide either an initial diagnosis, or the results of the 
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auscultation could be sent electronically to a doctor for further review. Some potential locations 

include oil rigs, embassies, forward operating bases, trans-oceanic ships, and any other location 

where a doctor and more advanced medical equipment may not be readily available.  

In-home patient monitoring is another valuable potential application for this technology. 

Nurses often do not have the necessary training to perform auscultation, but they could easily be 

trained on how to administer the computerized auscultation using a “smart” stethoscope. The 

advantages of patient monitoring are numerous.  After surgery or dismissal from the hospital a 

patient should still be monitored in case of complications. A “smart” stethoscope would provide 

a reliable and inexpensive means of monitoring these patients. Another benefit is that mildly ill 

patients in nursing homes or receiving in home care could be monitored. If their condition 

worsens, a nurse could be alerted to bring the patient to the Emergency Room. However, if their 

condition does not get worse, unnecessary trips to the emergency room could be prevented.  

Finally, medical outreach will be transformed. In many developing countries, x-rays, and 

CT scans are unheard of outside the major cities.  Doctors could travel to remote areas and 

administer the “smart” stethoscope and diagnose patients who would never have been able to get 

quality medical care. The stethoscope will be very cheap since it only involves a few 

microphones and a laptop computer. This portable technology can bring cheap, affordable health 

care to the masses.  

6.3 Future Work 

There are several opportunities for future work with respect to this thesis. First, genetic 

algorithms or some other feature selection algorithm could be applied to find the optimal subset 

of features for classification. Reducing the number of features will make the computer program 

more streamlined and also potentially yield better results. Multi-class neural networks should 

also be further explored because of their inherent properties which make them easily adaptable to 

the multi-class scenario.  

The features used in the dataset could also be modified to reflect some of the ongoing 

research in defining adventitious lung sounds. Re-defining the features could improve 

classification performance. It also would be beneficial to collect the data with the purpose of 

performing computerized auscultation.  
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There are also many opportunities to extend this research from a medical perspective. We 

only consider five diseases in the study. More diseases could be added to the models to truly 

increase utility when making a diagnosis on an unseen patient. Furthermore, the same technology 

can be extended to not only adventitious lung sounds but also heart sounds. Heart murmurs, 

gallops, pleural rubs, and arrhythmias could all be modeled by this device.  This could help for 

real-time analysis of aortic stenosis, heart disease, and other conditions.  
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Appendix A – Glossary of Acronyms 

Avar Amplitude Variability 

BL Bottom Left 

BR Bottom Right 

CHF Congestive Heart Failure 

CT Computed Tomography 

CTC Crackle Transmission Coefficient 

COPD Chronic Obstructive Pulmonary Disease 

ERM Empirical Risk Minimization 

FN False Negative 

FP False Positive 

IPF Idiopathic (Interstitial) Pulmonary Fibrosis 

kNN k Nearest Neighbor 

MRI Magnetic Resonance Imaging 

OVA One-vs-all 

OVO One-vs-one 

PN Pneumonia 

RR Respiratory Rate 

SRM Structural Risk Minimization 

STG Stethographics 

SVM Support Vector Machine 

TEWA Time Expanded Waveform Analysis 

TL Top Left 

TN True Negative 

TP True Positive 

TR Top Right 

Tvar Half Period Variability 

VC Vapnik Chervonenkis 

ZXS Zero Crossings 
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Appendix B – SVM Derivations 

In this appendix, we extend the mathematical formulations for support vector machines. This 

section is intended for the mathematically inclined and interested reader. 

 

Derivation of the Margin 

 In Chapter 3, we said the a separating hyperplane has this form: .  By 

adding a normalization constraint with respect to the data points, we can call this separator a 

canonical hyperplane. A hyperplane is in canonical form with respect to the data set if the 

following requirement is satisfied: 

  (A.1) 

The distance d(w, b, x) from any point xi to the hyperplane is: 

  (A.2) 

We also know that points on both side of the hyperplane must satisfy Equation A.1.  The margin, 

M,  is the distance between these two (or more) points that are the minimum distance away. 

Combining Equation A.1 and A.2 gives us the following derivation. 

  (A.3) 

  (A.4) 

  (A.5) 

  (A.6) 

      (A.7) 

 

Dual Formulations to Solve Convex Optimization  

 Remember from Chapter 3 the following formulation of the optimization problem for the 

linearly separable dataset.  

  (A.8) 
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To show how to solve this constrained minimization problem, we introduce the Lagrangian Dual 

formulation. Forming the dual problem has the several benefits. First, the constraints in 

formulation A.1 make the problem hard to solve. Instead of solving the problem this way, we 

introduce Lagrange multipliers, αi, for each constraint and move the constraints themselves into 

the objective function.  The original constraints in A.1 are replaced by constraints on the 

multipliers. Second, solving this type of problem in its dual form is typically more efficient sine 

it only involves dot products of vectors. Finally and most importantly, from the dual formulation 

we can derive the so-called support vectors.  

 To form the Lagrangian, we take the non-negative Lagrange multipliers and subtract 

them from the objective function. This gives the following Lagrangian: 

  (A.9) 

  

To minimize the Lagrangian, the α vector is fixed, and the partial derivatives with respect to w 

and b must be equal to zero. 

  (A.10) 

  (A.11) 

Therefore, we have the following conditions.  

 and (A.12) 

  (A.13) 

Substituting A.5 back into Equation A.2: 

  

 (A.14) 

  (A.15) 

  (A.16) 

Let D(α) be the minimum value of the Lagrangian for a particular α. Then the following 

conditions exist: 
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  (A.17) 

If the binding condition does not hold, b can increase or decrease to ±∞ causing the minimum to 

be unbounded. According to duality theory, we need to now maximize D(α) giving the following 

maximization problem: 

  (A.18) 

  

 

Here, since each dual variable αi corresponds to one of the constraints in the original primal 

formulation, they take on special characteristics here. If αi > 0, then the constraint in the primal is 

active. On the other hand, if αi = 0 , then the constraint is inactive. The constraint will only be 

active if the point lies on the margin of the optimal separating hyperplane. These are the support 

vectors. The training points that do not lie on the margin are unimportant and do not affect the 

orientation of the hyperplane. Furthermore, the optimal separating hyperplane is defined as a 

linear function of these support vectors.  

    (A.19) 

Also, since the support vectors are often only a small proportion of the total data, the model can 

be represented using minimal computation expenditures and memory requirements.  
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Appendix C – Feature Definitions 
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Num Crackles The total number of crackles in a patient 

Cr/Breath Average number of crackles per breath 

Med ZXS Median number of zero crossings   (Section 4.1.1) 

Med T1 Median T1   (Section 4.1.1) 

Med Freq Median frequency   (Section 4.1.1) 

Med T2/T1 Median T2/T1   (Section 4.1.1) 

Med Tvar Median Tvar   (Section 4.1.1) 

Med Timing Median Timing   (Section 4.1.1) 

Med CTC Median CTC   (Section 4.1.1) 

Med Ampl Median amplitude   (Section 4.1.1) 

Med A2/A1 Median A2/A1   (Section 4.1.1) 

Med A3/A1 Median A3/A1   (Section 4.1.1) 

Med Avar Median Avar   (Section 4.1.1) 

Med PosPolar  Median PosPolar   (Section 4.1.1) 

 
LtoR Crackle Percent 
Diff 

A percentage which measures the symmetry of the number of 
crackles on each side of the chest. It is calculated as the (#Crackles 
on the L - #Crackles on the R)/(Total # of crackles). 0% means there 
is no difference between sides and therefore an equal distribution. 
100% means all crackles are on one side. 

Wz Rate Percentage of breath cycle occupied by wheezing 

LtoR Wheeze 
Percent Diff 

A percentage which measures the symmetry of the number of 
wheezes on each side of the chest. It is calculated as the (#Wheezes 
on the L - #Wheezes on the R)/(Total # of wheezes). 0% means 
there is no difference between sides and therefore an equal 
distribution. 100% means all wheezes are on one side. 

Freq Wz Mean wheeze frequency 

Peak Ratio Wz A measure of how sharp the wheeze is in frequency domain 

Timing Wz When wheeze occurs during breath cycle 

WTC Wz Wheeze transmission coefficient, similar to CTC 

Ampl Wz Wheeze amplitude in dB 

Avar Wz 
Variability of the amplitude of wheeze on mother channel 
throughout 20 seconds expressed in percent of wheeze amplitude.  

RMS 
Average root mean square among all chest channels. RMS is a 
measure of sound power. 

STDev 
Variation of RMS in the chest channels expressed as percent of 
average RMS 

lRMS/rRMS 
 

Ratio of average RMS in left lung to averaged RMS in right lung. 
Expressed as a percentage. 

LtoR Rhonchi 
Percent Diff 

A percentage which measures the symmetry of the number of 
rhonchi on each side of the chest. It is calculated as the (#Rhonchi 
on the L - #Rhonchi on the R)/(Total # of rhonchi). 0% means there 
is no difference between sides and therefore an equal distribution. 
100% means all rhonchi are on one side. 

Duration Inspiratory or expiratory duration in seconds 
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 Squawks/breath The number of squawks heard per breath 

R1 Inspiratory duration/Expiratory duration in percent 

eRMS/iRMS Ratio of expiratory RMS to inspiratory RMS in percent 

lR4 
Left inspiratory R4 (ratio of low frequency energy (10Hz to 80Hz) to 
high frequency energy (80Hz to 500Hz) 

rR4 right inspiratory R4 

iStart In-homogeneity of inspiratory start  

iEnd In-homogeneity of inspiratory end  

lDR  
Left inspiratory dynamic range (the difference between maximum 
and minimum sound amplitude)  

rDR :  Right inspiratory dynamic range 

LtoR Dynamic Range 
Percent 

(lDR-rDR)/(l+r) Absolute difference between left and right 
inspiratory dynamic range expressed as percent of total. 
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Appendix D – Supplemental Results 

SVM Classification of Breaths Crackle Only Data Set 

  

Neg Class Sens Spec Acc Sens Spec Acc

CHF 0.558 0.470 0.527 0.567 0.436 0.523

IPF 0.766 0.785 0.769 0.831 0.755 0.823

Asthma 0.740 0.522 0.705 0.785 0.545 0.740

COPD 0.644 0.470 0.590 0.658 0.470 0.597

Normals 0.690 0.870 0.753 0.739 0.930 0.792

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.470 0.558 0.527 0.436 0.567 0.523

IPF 0.784 0.815 0.790 0.848 0.802 0.841

Asthma 0.672 0.459 0.621 0.724 0.484 0.659

COPD 0.655 0.405 0.529 0.722 0.368 0.544

Normals 0.631 0.794 0.674 0.686 0.814 0.712

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.785 0.766 0.769 0.755 0.831 0.823

CHF 0.815 0.784 0.790 0.802 0.848 0.841

Asthma 0.838 0.789 0.802 0.797 0.806 0.804

COPD 0.811 0.746 0.758 0.789 0.803 0.801

Normals 0.821 0.678 0.694 0.837 0.757 0.764

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.522 0.740 0.705 0.545 0.785 0.740

CHF 0.459 0.672 0.621 0.484 0.724 0.659

IPF 0.789 0.838 0.802 0.806 0.797 0.804

COPD 0.509 0.612 0.583 0.533 0.638 0.610

Normals 0.668 0.555 0.571 0.696 0.601 0.611

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.470 0.644 0.590 0.470 0.658 0.597

CHF 0.405 0.655 0.529 0.368 0.722 0.544

IPF 0.746 0.811 0.758 0.803 0.789 0.801

Asthma 0.612 0.509 0.583 0.638 0.533 0.610

Normals 0.735 0.603 0.634 0.792 0.626 0.658

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.870 0.690 0.753 0.930 0.739 0.792

CHF 0.794 0.631 0.674 0.814 0.686 0.712

IPF 0.678 0.821 0.694 0.757 0.837 0.764

Asthma 0.555 0.668 0.571 0.601 0.696 0.611

COPD 0.603 0.735 0.634 0.626 0.792 0.658

Normals
Breath Analysis Voting

COPD
Breath Analysis Voting

Interstitial Pulmonary Fibrosis
Breath Analysis Voting

Asthma
Breath Analysis Voting

Pneumonia
Breath Analysis Voting

Congestive Heart Failure
Breath Analysis Voting



102 

SVM Classification of Breaths Crackle and Distribution Data Set 

 

  

Neg Class Sens Spec Acc Sens Spec Acc

CHF 0.665 0.537 0.581 0.559 0.517 0.545

IPF 0.787 0.799 0.789 0.857 0.779 0.849

Asthma 0.841 0.402 0.770 0.873 0.411 0.789

COPD 0.771 0.314 0.629 0.801 0.317 0.641

Normals 0.827 0.781 0.797 0.864 0.858 0.860

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.537 0.665 0.581 0.517 0.559 0.545

IPF 0.802 0.786 0.800 0.879 0.743 0.858

Asthma 0.763 0.367 0.666 0.786 0.354 0.676

COPD 0.809 0.274 0.545 0.871 0.241 0.559

Normals 0.842 0.779 0.826 0.856 0.754 0.836

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.799 0.787 0.789 0.779 0.857 0.849

CHF 0.786 0.802 0.800 0.743 0.879 0.858

Asthma 0.824 0.850 0.843 0.791 0.874 0.854

COPD 0.744 0.820 0.807 0.664 0.874 0.843

Normals 0.831 0.852 0.851 0.840 0.914 0.909

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.402 0.841 0.770 0.411 0.873 0.789

CHF 0.367 0.763 0.666 0.354 0.786 0.676

IPF 0.850 0.824 0.843 0.874 0.791 0.854

COPD 0.436 0.672 0.609 0.446 0.690 0.623

Normals 0.649 0.587 0.640 0.711 0.611 0.700

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.314 0.771 0.629 0.317 0.801 0.641

CHF 0.274 0.809 0.545 0.241 0.871 0.559

IPF 0.820 0.744 0.807 0.874 0.664 0.843

Asthma 0.672 0.436 0.609 0.690 0.446 0.623

Normals 0.693 0.725 0.717 0.719 0.805 0.789

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.781 0.827 0.797 0.858 0.864 0.860

CHF 0.779 0.842 0.826 0.754 0.856 0.836

IPF 0.852 0.831 0.851 0.914 0.840 0.909

Asthma 0.587 0.649 0.640 0.611 0.711 0.700

COPD 0.725 0.693 0.717 0.805 0.719 0.789

Normals
Breath Analysis Voting

COPD
Breath Analysis Voting

Interstitial Pulmonary Fibrosis
Breath Analysis Voting

Asthma
Breath Analysis Voting

Pneumonia
Breath Analysis Voting

Congestive Heart Failure
Breath Analysis Voting
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SVM Classification of Breaths Other Sounds Data Set  

 

  

Neg Class Sens Spec Acc Sens Spec Acc

CHF 0.599 0.639 0.613 0.599 0.651 0.616

IPF 0.851 0.776 0.843 0.873 0.720 0.856

Asthma 0.757 0.626 0.736 0.742 0.663 0.728

COPD 0.714 0.704 0.711 0.688 0.737 0.704

Normals 0.884 0.880 0.883 0.904 0.842 0.887

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.639 0.599 0.613 0.651 0.599 0.616

IPF 0.800 0.796 0.800 0.825 0.733 0.811

Asthma 0.776 0.713 0.760 0.762 0.711 0.748

COPD 0.751 0.681 0.717 0.710 0.686 0.698

Normals 0.847 0.819 0.840 0.867 0.791 0.853

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.776 0.851 0.843 0.720 0.873 0.856

CHF 0.796 0.800 0.800 0.733 0.825 0.811

Asthma 0.911 0.856 0.871 0.858 0.859 0.859

COPD 0.834 0.846 0.845 0.793 0.856 0.847

Normals 0.861 0.824 0.828 0.842 0.829 0.830

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.626 0.757 0.736 0.663 0.742 0.728

CHF 0.713 0.776 0.760 0.711 0.762 0.748

IPF 0.856 0.911 0.871 0.859 0.858 0.859

COPD 0.657 0.736 0.715 0.675 0.721 0.709

Normals 0.804 0.824 0.821 0.762 0.833 0.825

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.704 0.714 0.711 0.737 0.688 0.704

CHF 0.681 0.751 0.717 0.686 0.710 0.698

IPF 0.846 0.834 0.845 0.856 0.793 0.847

Asthma 0.736 0.657 0.715 0.721 0.675 0.709

Normals 0.845 0.932 0.912 0.814 0.936 0.913

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.880 0.884 0.883 0.842 0.904 0.887

CHF 0.819 0.847 0.840 0.791 0.867 0.853

IPF 0.824 0.861 0.828 0.829 0.842 0.830

Asthma 0.824 0.804 0.821 0.833 0.762 0.825

COPD 0.932 0.845 0.912 0.936 0.814 0.913

Congestive Heart Failure

Pneumonia
Breath Analysis Voting

COPD

Breath Analysis Voting

Interstitial Pulmonary Fibrosis
Breath Analysis Voting

Asthma
Breath Analysis Voting

Breath Analysis Voting

Normals
Breath Analysis Voting
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SVM Classification of Breaths Full Data Set  

 

Neg Class Sens Spec Acc Sens Spec Acc

CHF 0.540 0.696 0.588 0.540 0.695 0.592

IPF 0.847 0.777 0.839 0.875 0.739 0.860

Asthma 0.763 0.617 0.739 0.750 0.647 0.731

COPD 0.708 0.675 0.698 0.681 0.709 0.690

Normals 0.891 0.896 0.893 0.910 0.867 0.898

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.696 0.540 0.588 0.695 0.540 0.592

IPF 0.806 0.783 0.804 0.840 0.742 0.825

Asthma 0.794 0.667 0.763 0.791 0.653 0.753

COPD 0.791 0.667 0.730 0.752 0.698 0.725

Normals 0.838 0.825 0.835 0.870 0.795 0.856

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.777 0.847 0.839 0.739 0.875 0.860

CHF 0.783 0.806 0.804 0.742 0.840 0.825

Asthma 0.889 0.873 0.877 0.848 0.881 0.873

COPD 0.803 0.840 0.835 0.756 0.856 0.841

Normals 0.841 0.839 0.840 0.842 0.849 0.849

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.617 0.763 0.739 0.647 0.750 0.731

CHF 0.667 0.794 0.763 0.653 0.791 0.753

IPF 0.873 0.889 0.877 0.881 0.848 0.873

COPD 0.668 0.729 0.713 0.689 0.718 0.710

Normals 0.712 0.922 0.891 0.674 0.916 0.887

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.675 0.708 0.698 0.709 0.681 0.690

CHF 0.667 0.791 0.730 0.698 0.752 0.725

IPF 0.840 0.803 0.835 0.856 0.756 0.841

Asthma 0.729 0.668 0.713 0.718 0.689 0.710

Normals 0.843 0.928 0.908 0.829 0.946 0.924

Neg Class Sens Spec Acc Sens Spec Acc

PN 0.896 0.891 0.893 0.867 0.910 0.898

CHF 0.825 0.838 0.835 0.795 0.870 0.856

IPF 0.839 0.841 0.840 0.849 0.842 0.849

Asthma 0.922 0.712 0.891 0.916 0.674 0.887

COPD 0.928 0.843 0.908 0.946 0.829 0.924

Normals
Breath Analysis Voting

COPD
Breath Analysis Voting

Interstitial Pulmonary Fibrosis
Breath Analysis Voting

Asthma
Breath Analysis Voting

Pneumonia
Breath Analysis Voting

Congestive Heart Failure
Breath Analysis Voting
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SVM Breath Classification with Voting Applied  
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